Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 306, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363387

RESUMO

BACKGROUND: Identification and characterization of the endophytic microorganism, is gaining their underestimated significance in influencing health, performance, and other biological attributions of plants in general and forest tree species in particular. Because of the scarcity of information on the endophytic microbiome of the Hyrcanian forests species, including hornbeam (Carpinus betulus L.) trees, as a major constituent thereof, the present study aimed at the identification and partial characterization of the endophytic Bacillus species of Carpinus betulus as the first step in this context. METHODS AND RESULTS: Shoot samples were collected from the Hyrcanian forest locations of Mazandaran and Golestan provinces in Iran. Bacterial strains were isolated from the surface-disinfected shoot segments and subjected to phenotypic characterization. Following assessment of the genetic diversity of the isolates by BOX-PCR fingerprinting, the representative isolates of each of the 15 groups were used for further characterization. Analysis of the nucleotide sequences of the 16S rDNA and HSP60 gene of the isolates led to the identification of 10 species. The predominant species was B. cereus followed by B. subtilis. The other species encountered were B. thuringiensis, Priestia filamentosa, B. velezensis, B. mojavensis, B. amyloliquefaciens, B. safensis, P. aryabhattai, and Gottfriedia acidiceleris. Most isolates possessed characteristics which could contribute to the biocontrol potential of the isolates, including formation of biofilm, production of hydrogen cyanide, tolerant to relatively high concentration of sodium chloride, and antibacterial activity. CONCLUSIONS: Ten Bacillus species were identified as the prevailing endophytic species of C. betulus in the Hyrcanian forest of northern Iran, most turned up to possess biological activities involved in biocontrol capability of the isolates against some plant pathogens. These potentially capable bacteria could be implemented in the promotion of plant growth as well as in the biological control of pathogens. This is the first report on the characterization and elucidation of the diversity of the potentially beneficial endophytic species of Bacillus and the closely related genera living in the internal tissues of hornbeam trees.


Assuntos
Bacillus , Irã (Geográfico) , Filogenia , Bacillus/genética , Bactérias/genética , Florestas , Árvores , Plantas , Betulaceae
2.
Sci Rep ; 14(1): 2533, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291102

RESUMO

This study investigated the influence of vegetation and microforms on methane (CH4) balances of a rewetted bog in north-west Germany. The two study sites are in close proximity on the same former peat extraction area, one dominated by Sphagnum-mosses and the other one by a dense Betula pubescens stand with a high Eriophorum vaginatum cover. The contribution of microforms (hummocks/hollows) to CH4 emissions and the effect of Betula encroachment has been studied. Transparent and opaque chambers were used to measure CH4 fluxes every 3-4 weeks during daytime for one year. For the estimation of annual balances, three methods were compared and the method using water level and soil temperature as explanatory variables was selected. Fluxes were scaled to the site level. The annual emissions per site are and 7.1 ± 1.5 g CH4-C m-2 year-1 at the treed site and 36.1 ± 3.5 g CH4-C m-2 year-1 at the open site, mainly controlled by higher water levels. Highest annual emissions originated from hollows at the open site, but in the vegetation period, hummock emissions tend to be higher. At the tree site, emission differences between the microforms were less pronounced. There were no differences between fluxes from transparent and opaque chambers.


Assuntos
Água Subterrânea , Áreas Alagadas , Betula , Metano , Microfilmagem , Árvores , Betulaceae , Solo , Água , Dióxido de Carbono/análise
3.
Sci Rep ; 14(1): 5618, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454094

RESUMO

The hazel allergen Cor a 1 is a PR-10 protein, closely related to the major birch pollen allergen Bet v 1. Hazel allergies are caused by cross-reactive IgE antibodies originally directed against Bet v 1. Despite the importance of PR-10 proteins in allergy development, their function and localization in the plant remain largely elusive. Therefore, the presence of Cor a 1 mRNA and proteins was investigated in different tissues, i.e., the female flower, immature and mature nuts, catkins, and pollen. Four yet unknown Cor a 1 isoallergens, i.e., Cor a 1.0501-1.0801, and one new Cor a 1.03 variant were discovered and characterized. Depending on the isoallergen, the occurrence and level of mRNA expression varied in different tissues, suggesting different functions. Interestingly, Cor a 1.04 previously thought to be only present in nuts, was also detected in catkins and pollen. The corresponding Cor a 1 genes were expressed in Escherichia coli. The purified proteins were analysed by CD and NMR spectroscopy. Immunoblots and ELISAs to determine their allergenic potential showed that the new proteins reacted positively with sera from patients allergic to birch, hazel and elder pollen and were recognized as novel isoallergens/variants by the WHO/IUIS Allergen Nomenclature Sub-Committee.


Assuntos
Corylus , Hipersensibilidade , Humanos , Idoso , Alérgenos , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Betulaceae/metabolismo , Betula/metabolismo , RNA Mensageiro , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo
4.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580109

RESUMO

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Assuntos
Recuperação e Remediação Ambiental , Florestas , Solo , Solo/química , Clima , Meio Ambiente , Irã (Geográfico) , Quercus , Betulaceae , Tempo , Biota , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA