Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.599
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 22(2): 111-117, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495644

RESUMO

Laboratory mice have provided invaluable insight into mammalian immune systems. Yet the immune phenotypes of mice bred and maintained in conventional laboratory conditions often differ from the immune phenotypes of wild mammals. Recent work to naturalize the environmental experience of inbred laboratory mice-to take them where the wild things are (to borrow a phrase from Maurice Sendak), via approaches such as construction of exposure histories, provision of fecal transplants or surrogate mothering by wild mice, and rewilding-is poised to expand understanding, complementing genetic and phylogenetic research on how natural selection has shaped mammalian immune systems while improving the translational potential of mouse research.


Assuntos
Alergia e Imunologia , Pesquisa Biomédica , Meio Ambiente , Sistema Imunitário/fisiologia , Imunidade , Animais , Evolução Biológica , Biota , Interações Hospedeiro-Patógeno , Sistema Imunitário/microbiologia , Camundongos , Modelos Animais , Fenótipo
2.
Nature ; 618(7966): 767-773, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286610

RESUMO

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.


Assuntos
Evolução Biológica , Eucariotos , Fósseis , Bactérias/química , Bactérias/metabolismo , Eucariotos/química , Eucariotos/classificação , Eucariotos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Esteróis/análise , Esteróis/biossíntese , Esteróis/isolamento & purificação , Esteróis/metabolismo , Sedimentos Geológicos/química , Vias Biossintéticas , Organismos Aquáticos/química , Organismos Aquáticos/classificação , Organismos Aquáticos/metabolismo , Biota , Filogenia , História Antiga
3.
Nature ; 607(7918): 307-312, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732740

RESUMO

The diversity of life on Earth is controlled by hierarchical processes that interact over wide ranges of timescales1. Here, we consider the megaclimate regime2 at scales ≥1 million years (Myr). We focus on determining the domains of 'wandering' stochastic Earth system processes ('Court Jester'3) and stabilizing biotic interactions that induce diversity dependence of fluctuations in macroevolutionary rates ('Red Queen'4). Using state-of-the-art multiscale Haar and cross-Haar fluctuation analyses, we analysed the global genus-level Phanerozoic marine animal Paleobiology Database record of extinction rates (E), origination rates (O) and diversity (D) as well as sea water palaeotemperatures (T). Over the entire observed range from several million years to several hundred million years, we found that the fluctuations of T, E and O showed time-scaling behaviour. The megaclimate was characterized by positive scaling exponents-it is therefore apparently unstable. E and O are also scaling but with negative exponents-stable behaviour that is biotically mediated. For D, there were two regimes with a crossover at critical timescale [Formula: see text] ≈ 40 Myr. For shorter timescales, D exhibited nearly the same positive scaling as the megaclimate palaeotemperatures, whereas for longer timescales it tracks the scaling of macroevolutionary rates. At scales of at least [Formula: see text] there is onset of diversity dependence of E and O, probably enabled by mixing and synchronization (globalization) of the biota by geodispersal ('Geo-Red Queen').


Assuntos
Evolução Biológica , Biota , Clima , Animais , Organismos Aquáticos , Planeta Terra , Extinção Biológica , Água do Mar , Temperatura , Fatores de Tempo
4.
Nature ; 611(7936): 507-511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323782

RESUMO

Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.


Assuntos
Biota , Mudança Climática , Pradaria , Fenômenos Fisiológicos Vegetais , Plantas , Chuva , Clima , Plantas/classificação , Especificidade da Espécie , California
5.
Nature ; 608(7923): 523-527, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978129

RESUMO

The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean1-3. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2)4,5. Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. We further identify the presence of state transitions in the global ocean circulation, which lead to extensive deep-ocean anoxia developing in the early Phanerozoic even under modern pO2. Our finding that ocean oxygenation oscillates over stable thousand-year (kyr) periods also provides a causal mechanism that might explain elevated rates of metazoan radiation and extinction during the early Palaeozoic Era6. The absence, in our modelling, of any simple correlation between global climate and ocean ventilation, and the occurrence of profound variations in ocean oxygenation independent of atmospheric pO2, presents a challenge to the interpretation of marine redox proxies, but also points to a hitherto unrecognized role for continental configuration in the evolution of the biosphere.


Assuntos
Oceanos e Mares , Oxigênio , Animais , Evolução Biológica , Biota , Planeta Terra , Extinção Biológica , História Antiga , Oxigênio/análise , Oxigênio/metabolismo , Fatores de Tempo , Movimentos da Água
6.
Nature ; 610(7932): 513-518, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224387

RESUMO

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Política Ambiental , Biodiversidade , Biota , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências , Objetivos , Nações Unidas , Animais
7.
Nature ; 600(7887): 86-92, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34671161

RESUMO

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas Alagadas
8.
PLoS Biol ; 21(12): e3002434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150463

RESUMO

Mutualistic interactions, such as plant-mycorrhizal or plant-pollinator interactions, are widespread in ecological communities and frequently exploited by cheaters, species that profit from interactions without providing benefits in return. Cheating usually negatively affects the fitness of the individuals that are cheated on, but the effects of cheating at the community level remains poorly understood. Here, we describe 2 different kinds of cheating in mutualistic networks and use a generalized Lotka-Volterra model to show that they have very different consequences for the persistence of the community. Conservative cheating, where a species cheats on its mutualistic partners to escape the cost of mutualistic interactions, negatively affects community persistence. In contrast, innovative cheating occurs with species with whom legitimate interactions are not possible, because of a physiological or morphological barrier. Innovative cheating can enhance community persistence under some conditions: when cheaters have few mutualistic partners, cheat at low or intermediate frequency and the cost associated with mutualism is not too high. Under these conditions, the negative effects of cheating on partner persistence are overcompensated at the community level by the positive feedback loops that arise in diverse mutualistic communities. Using an empirical dataset of plant-bird interactions (hummingbirds and flowerpiercers), we found that observed cheating patterns are highly consistent with theoretical cheating patterns found to increase community persistence. This result suggests that the cheating patterns observed in nature could contribute to promote species coexistence in mutualistic communities, instead of necessarily destabilizing them.


Assuntos
Micorrizas , Humanos , Simbiose/fisiologia , Plantas , Biota
9.
Nature ; 577(7789): 226-230, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853064

RESUMO

Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey1-4. However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods5-8 and experimental studies indicate that oscillations may be short-lived without external stabilizing factors9-19. Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events.


Assuntos
Clorófitas/fisiologia , Cadeia Alimentar , Modelos Biológicos , Rotíferos/fisiologia , Animais , Biota , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/fisiologia , Clorófitas/crescimento & desenvolvimento , Rotíferos/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 120(42): e2222071120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812702

RESUMO

Species' phenotypic characteristics often remain unchanged over long stretches of geological time. Stabilizing selection-in which fitness is highest for intermediate phenotypes and lowest for the extremes-has been widely invoked as responsible for this pattern. At the community level, such stabilizing selection acting individually on co-occurring species is expected to produce a rugged fitness landscape on which different species occupy distinct fitness peaks. However, even with an explosion of microevolutionary field studies over the past four decades, evidence for persistent stabilizing selection driving long-term stasis is lacking. Nonetheless, biologists continue to invoke stabilizing selection as a major factor explaining macroevolutionary patterns. Here, by directly measuring natural selection in the wild, we identified a complex community-wide fitness surface in which four Anolis lizard species each occupy a distinct fitness peak close to their mean phenotype. The presence of local fitness optima within species, and fitness valleys between species, presents a barrier to adaptive evolutionary change and acts to maintain species differences through time. However, instead of continuously operating stabilizing selection, we found that species were maintained on these peaks by the combination of many independent periods among which selection fluctuated in form, strength, direction, or existence and in which stabilizing selection rarely occurred. Our results suggest that lack of substantial phenotypic evolutionary change through time may be the result of selection, but not persistent stabilizing selection as classically envisioned.


Assuntos
Evolução Biológica , Seleção Genética , Fenótipo , Meio Ambiente , Biota
11.
Proc Natl Acad Sci U S A ; 120(7): e2201944119, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745805

RESUMO

Biodiversity loss poses a major threat to ecosystem function, which has already been severely impacted by global late-Quaternary defaunation. The loss of mammalian megafauna from many insular systems has rendered reptiles into key modulators of many ecosystem services, such as seed dispersal and pollination. How late-Quaternary extinction events impacted reptile functional diversity remains unclear but can provide critical guidance on traits that render reptiles vulnerable to extinction, as well as anthropogenic, environmental, and evolutionary histories that may promote stability and resilience. This study reconstructs the trajectory of functional diversity change in the Caribbean reptile fauna, a speciose biota distributed over a diverse set of islands with heterogeneous histories of human habitation and exploitation. Human-induced Quaternary extinctions have completely removed key functional entities (FEs)-groupings of species with similar traits that are expected to provide similar ecosystem services-from the region, but functional redundancy on large islands served as a buffer to major functional diversity loss. Small islands, on the other hand, lose up to 67% of their native FEs with only a few exceptions, underscoring the importance of a place's anthropogenic history in shaping present-day biodiversity. While functional redundancy has shielded ecosystems from significant functional diversity loss in the past, it is being eroded and not replenished by species introductions, leaving many native FEs and the communities that they support vulnerable to extinction and functional collapse. This research provides critical data on long-term functional diversity loss for a taxonomic group whose contributions to ecosystem function are understudied and undervalued.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Biota , Répteis , Índias Ocidentais , Mamíferos
12.
Proc Natl Acad Sci U S A ; 120(25): e2303764120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307462

RESUMO

We assessed the relationship between rates of biological energy utilization and the biomass sustained by that energy utilization, at both the organism and biosphere level. We compiled a dataset comprising >10,000 basal, field, and maximum metabolic rate measurements made on >2,900 individual species, and, in parallel, we quantified rates of energy utilization, on a biomass-normalized basis, by the global biosphere and by its major marine and terrestrial components. The organism-level data, which are dominated by animal species, have a geometric mean among basal metabolic rates of 0.012 W (g C)-1 and an overall range of more than six orders of magnitude. The biosphere as a whole uses energy at an average rate of 0.005 W (g C)-1 but exhibits a five order of magnitude range among its components, from 0.00002 W (g C)-1 for global marine subsurface sediments to 2.3 W (g C)-1 for global marine primary producers. While the average is set primarily by plants and microorganisms, and by the impact of humanity upon those populations, the extremes reflect systems populated almost exclusively by microbes. Mass-normalized energy utilization rates correlate strongly with rates of biomass carbon turnover. Based on our estimates of energy utilization rates in the biosphere, this correlation predicts global mean biomass carbon turnover rates of ~2.3 y-1 for terrestrial soil biota, ~8.5 y-1 for marine water column biota, and ~1.0 y-1 and ~0.01 y-1 for marine sediment biota in the 0 to 0.1 m and >0.1 m depth intervals, respectively.


Assuntos
Metabolismo Basal , Biota , Animais , Biomassa , Carbono , Sedimentos Geológicos
13.
Proc Natl Acad Sci U S A ; 120(15): e2110866120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018201

RESUMO

Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity's responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss.


Assuntos
Biodiversidade , Ecossistema , Humanos , Biota , Mudança Climática , Ecologia
14.
Proc Natl Acad Sci U S A ; 120(43): e2306815120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844232

RESUMO

Recent global changes associated with anthropogenic activities are impacting ecological systems globally, giving rise to the Anthropocene. Critical reorganization of biological communities and biodiversity loss are expected to accelerate as anthropogenic global change continues. Long-term records offer context for understanding baseline conditions and those trajectories that are beyond the range of normal fluctuation seen over recent millennia: Are we causing changes that are fundamentally different from changes in the past? Using a rich dataset of late Quaternary pollen records, stored in the open-access and community-curated Neotoma database, we analyzed changes in biodiversity and community composition since the end Pleistocene in North America. We measured taxonomic richness, short-term taxonomic loss and gain, first/last appearances (FAD/LAD), and abrupt community change. For all analyses, we incorporated age-model uncertainty and accounted for differences in sample size to generate conservative estimates. The most prominent signals of elevated vegetation change were seen during the Pleistocene-Holocene transition and since 200 calendar years before present (cal YBP). During the Pleistocene-Holocene transition, abrupt changes and FADs were elevated, and from 200 to -50 cal YBP, we found increases in short-term taxonomic loss, FADs, LADs, and abrupt changes. Taxonomic richness declined from ~13,000 cal YBP until about 6,000 cal YBP and then increased until the present, reaching levels seen during the end Pleistocene. Regionally, patterns were highly variable. These results show that recent changes associated with anthropogenic impacts are comparable to the landscape changes that took place as we moved from a glacial to interglacial world.


Assuntos
Biodiversidade , Ecossistema , Pólen , América do Norte , Biota
15.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745783

RESUMO

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Assuntos
Biodiversidade , Biota , Humanos , Animais , Fatores de Tempo , Aves/genética , Mudança Climática , Ecossistema
16.
Proc Natl Acad Sci U S A ; 120(1): e2217880120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574705

RESUMO

Evolutionary innovations, defined as character states that transcend clade norms, are often studied in an exclusively phylogenetic context, but their distribution in time and space indicates that geography also influences the evolution of new ecological, morphological, and physiological traits. In an analysis of 99 fossillzable, norm-breaking innovations in tropical marine Neogene molluscan clades that arose uniquely in either (but not in both) the Indo-West Pacific (IWP) or Atlantic-East Pacific (AEP) realms, I show that there are far more innovations in the IWP (79%) than those in the AEP (21%). Most of the innovations are interpretable as defensive or competitive adaptations or as indicators of extreme habitat specialization. Although the innovations arose in taxonomically rich biotas, only 9% are associated with subclades comprising 10 or more species each, indicating that they contributed little to overall taxonomic richness. Compilations of extant species in 30 pantropical molluscan clades show that the IWP accounts for 71% of tropical shallow-water species, implying that the per-species incidence of norm-breaking innovations is higher there than in the AEP. Only 5% of innovations became extinct in the IWP as compared with 38% in the AEP, mirroring a similar difference in the magnitudes of Late Miocene and later taxonomic extinction in the two realms. These data imply that large-scale disruption strongly limits norm-breaking innovation. Opportunities for adaptive innovation are therefore likely to be few in today's heavily overexploited and disturbed biosphere.


Assuntos
Biota , Ecossistema , Filogenia , Geografia , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 120(20): e2211288120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155860

RESUMO

Effective conservation of ecological communities requires accurate and up-to-date information about whether species are persisting or declining to extinction. The persistence of an ecological community is supported by its underlying network of species interactions. While the persistence of the network supporting the whole community is the most relevant scale for conservation, in practice, only small subsets of these networks can be monitored. There is therefore an urgent need to establish links between the small snapshots of data conservationists can collect, and the "big picture" conclusions about ecosystem health demanded by policymakers, scientists, and societies. Here, we show that the persistence of small subnetworks (motifs) in isolation-that is, their persistence when considered separately from the larger network of which they are a part-is a reliable probabilistic indicator of the persistence of the network as a whole. Our methods show that it is easier to detect if an ecological community is not persistent than if it is persistent, allowing for rapid detection of extinction risk in endangered systems. Our results also justify the common practice of predicting ecological persistence from incomplete surveys by simulating the population dynamics of sampled subnetworks. Empirically, we show that our theoretical predictions are supported by data on invaded networks in restored and unrestored areas, even in the presence of environmental variability. Our work suggests that coordinated action to aggregate information from incomplete sampling can provide a means to rapidly assess the persistence of entire ecological networks and the expected success of restoration strategies.


Assuntos
Biota , Ecossistema , Dinâmica Populacional
18.
Proc Natl Acad Sci U S A ; 120(1): e2203724120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577073

RESUMO

Multitrait adaptive evolution is shaped by factors such as phylogenetic and functional constraints as well as the intensity and direction of selection. The tempo and mode of such multitrait evolution can differentially impact the assembly of biological communities. Batesian mimicry, in which undefended prey gain a fitness advantage by evolving a resemblance to aposematic models, involves adaptive evolution of multiple traits such as color patterns and flight morphology. To elucidate the evolutionary mechanisms of such multitrait adaptations, we evaluated the tempo and mode of adaptive convergence in flight morphology and color patterns in mimetic butterfly communities. We found that compared with Batesian mimics or nonmimetic sister species, models showed significantly faster rates of aposematic trait evolution, creating adaptive peaks for mimicry. At the community level, the degree of mimetic resemblance between mimics and models was positively correlated with the rate of character evolution, but independent of phylogenetic relatedness. Monomorphic mimics and female-limited mimics converged on the color patterns of models to a similar degree, showing that there were no constraints on mimetic trait evolution with respect to sex-specific selections. Convergence was driven by the greater lability of color patterns, which evolved at significantly faster rates than the phylogenetically conserved flight morphological traits, indicating that the two traits evolve under differential selection pressures and/or functional and genetic constraints. These community-wide patterns show that during the assembly of a community, the tempo of adaptive evolution is nonlinear, and specific to the underlying functional relationships and key traits that define the community.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Feminino , Masculino , Evolução Biológica , Biota , Borboletas/genética , Filogenia , Comportamento Predatório
19.
Proc Natl Acad Sci U S A ; 120(40): e2302424120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748058

RESUMO

Delimiting and naming biodiversity is a vital step toward wildlife conservation and research. However, species delimitation must be consistent across biota so that the limited resources available for nature protection can be spent effectively and objectively. To date, newly discovered lineages typically are either left undescribed and thus remain unprotected or are being erroneously proposed as new species despite mixed evidence for completed speciation, in turn contributing to the emerging problem of taxonomic inflation. Inspired by recent conceptual and methodological progress, we propose a standardized workflow for species delimitation that combines phylogenetic and hybrid zone analyses of genomic datasets ("genomic taxonomy"), in which phylogeographic lineages that do not freely admix are ranked as species, while those that have remained fully genetically compatible are ranked as subspecies. In both cases, we encourage their formal taxonomic naming, diagnosis, and description to promote social awareness toward biodiversity. The use of loci throughout the genome overcomes the unreliability of widely used barcoding genes when phylogeographic patterns are complex, while the evaluation of divergence and reproductive isolation unifies the long-opposed concepts of lineage species and biological species. We suggest that a shift in conservation assessments from a single level (species) toward a two-level hierarchy (species and subspecies) will lead to a more balanced perception of biodiversity in which both intraspecific and interspecific diversity are valued and more adequately protected.


Assuntos
Biodiversidade , Biota , Animais , Filogenia , Animais Selvagens , Genômica
20.
Annu Rev Genet ; 51: 45-62, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28853922

RESUMO

The standard genetic code (SGC) is virtually universal among extant life forms. Although many deviations from the universal code exist, particularly in organelles and prokaryotes with small genomes, they are limited in scope and obviously secondary. The universality of the code likely results from the combination of a frozen accident, i.e., the deleterious effect of codon reassignment in the SGC, and the inhibitory effect of changes in the code on horizontal gene transfer. The structure of the SGC is nonrandom and ensures high robustness of the code to mutational and translational errors. However, this error minimization is most likely a by-product of the primordial code expansion driven by the diversification of the repertoire of protein amino acids, rather than a direct result of selection. Phylogenetic analysis of translation system components, in particular aminoacyl-tRNA synthetases, shows that, at a stage of evolution when the translation system had already attained high fidelity, the correspondence between amino acids and cognate codons was determined by recognition of amino acids by RNA molecules, i.e., proto-tRNAs. We propose an experimentally testable scenario for the evolution of the code that combines recognition of amino acids by unique sites on proto-tRNAs (distinct from the anticodons), expansion of the code via proto-tRNA duplication, and frozen accident.


Assuntos
Biota/genética , Evolução Molecular , Código Genético , Genoma , Modelos Genéticos , Biossíntese de Proteínas , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/química , Anticódon/metabolismo , Códon/química , Códon/metabolismo , Extinção Biológica , Transferência Genética Horizontal , Filogenia , RNA de Transferência/genética , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA