Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.415
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 164(1-2): 279-292, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771496

RESUMO

Mammalian interspecific hybrids provide unique advantages for mechanistic studies of speciation, gene expression regulation, and X chromosome inactivation (XCI) but are constrained by their limited natural resources. Previous artificially generated mammalian interspecific hybrid cells are usually tetraploids with unstable genomes and limited developmental abilities. Here, we report the generation of mouse-rat allodiploid embryonic stem cells (AdESCs) by fusing haploid ESCs of the two species. The AdESCs have a stable allodiploid genome and are capable of differentiating into all three germ layers and early-stage germ cells. Both the mouse and rat alleles have comparable contributions to the expression of most genes. We have proven AdESCs as a powerful tool to study the mechanisms regulating X chromosome inactivation and to identify X inactivation-escaping genes, as well as to efficiently identify genes regulating phenotypic differences between species. A similar method could be used to create hybrid AdESCs of other distantly related species.


Assuntos
Fusão Celular/métodos , Quimera/genética , Células-Tronco Embrionárias/citologia , Células Híbridas , Camundongos , Ratos , Animais , Diferenciação Celular , Corpos Embrioides , Células-Tronco Embrionárias/metabolismo , Feminino , Haploidia , Masculino , Camundongos Endogâmicos , Ratos Endogâmicos F344 , Especificidade da Espécie , Inativação do Cromossomo X
2.
Cell ; 156(5): 907-19, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581492

RESUMO

Recent studies recognize a vast diversity of noncoding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using C0T-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (C0T-1 RNA), including LINE-1. C0T-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The C0T-1 RNA territory resists mechanical disruption and fractionates with the nonchromatin scaffold but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. C0T-1 RNA has several properties similar to XIST chromosomal RNA but is excluded from chromatin condensed by XIST. These findings impact two "black boxes" of genome science: the poorly understood diversity of noncoding RNA and the unexplained abundance of repetitive elements.


Assuntos
Cromossomos de Mamíferos/química , Eucromatina/química , Interfase , RNA não Traduzido/análise , Animais , Núcleo Celular/química , Humanos , Células Híbridas , Elementos Nucleotídeos Longos e Dispersos , Camundongos , RNA não Traduzido/genética , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
3.
Nature ; 592(7854): 421-427, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731928

RESUMO

Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3-5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.


Assuntos
Fusão Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Híbridas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurogênese/genética , Alelos , Animais , Astrócitos/citologia , Sinalização do Cálcio , Córtex Cerebral/citologia , Feminino , Humanos , Masculino , Neurônios/citologia , Organoides/citologia , Pan troglodytes/genética , Receptores de Somatostatina/genética , Reprodutibilidade dos Testes , Transcrição Gênica
4.
Genes Dev ; 33(23-24): 1688-1701, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727772

RESUMO

Human nucleolar organizer regions (NORs), containing ribosomal gene (rDNA) arrays, are located on the p-arms of acrocentric chromosomes (HSA13-15, 21, and 22). Absence of these p-arms from genome references has hampered research on nucleolar formation. Previously, we assembled a distal junction (DJ) DNA sequence contig that abuts rDNA arrays on their telomeric side, revealing that it is shared among the acrocentrics and impacts nucleolar organization. To facilitate inclusion into genome references, we describe sequencing the DJ from all acrocentrics, including three versions of HSA21, ∼3 Mb of novel sequence. This was achieved by exploiting monochromosomal somatic cell hybrids containing single human acrocentric chromosomes with NORs that retain functional potential. Analyses revealed remarkable DJ sequence and functional conservation among human acrocentrics. Exploring chimpanzee acrocentrics, we show that "DJ-like" sequences and abutting rDNA arrays are inverted as a unit in comparison to humans. Thus, rDNA arrays and linked DJs represent a conserved functional locus. We provide direct evidence for exchanges between heterologous human acrocentric p-arms, and uncover extensive structural variation between chromosomes and among individuals. These findings lead us to revaluate the molecular definition of NORs, identify novel genomic structural variation, and provide a rationale for the distinctive chromosomal organization of NORs.


Assuntos
Cromossomos/química , Cromossomos/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Região Organizadora do Nucléolo/química , Região Organizadora do Nucléolo/genética , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada/genética , Estruturas Genéticas/genética , Variação Genética , Humanos , Células Híbridas , Camundongos , Pan troglodytes/genética
5.
BMC Cancer ; 23(1): 497, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264310

RESUMO

BACKGROUND: Cancer's hallmark feature is its ability to evolve, leading to metastasis and recurrence. Although genetic mutations and epigenetic changes have been implicated, they don't fully explain the leukocytic traits that many cancers develop. Cell fusion between cancer and somatic cells, particularly macrophages, has been suggested as an alternative pathway for cancer cells to obtain new traits by acquiring exogenous genetic material. METHODS: This study aims to investigate the potential biological outcomes of tumor-myeloid cell fusion by generating tumor-macrophage hybrid cells. Two clones with markedly different tumorigenicity were selected, and RNA-seq was used to compare their RNA expressions with that of the control cells. Based on the results that the hybrid cells showed differential activation in several upstream regulator pathways that impact their biological behaviors, the hybrid cells' abilities to recruit stromal cells and establish angiogenesis as well as their cell cycle distributions were investigated through in vitro and in vivo studies. RESULTS: Although both hybrid clones demonstrated p53 activation and reduced growth rates, they exhibited distinct cell cycle distributions and ability to grow in vivo. Notably, while one clone was highly tumorigenic, the other showed little tumorigenicity. Despite these differences, both hybrid clones were potent environmental modifiers, exhibiting significant abilities to recruit stromal and immune cells and establish angiogenesis. CONCLUSIONS: The study revealed that tumor-somatic cell fusion is a potent environmental modifier that can modulate tumor survival and evolution, despite its relatively low occurrence. These findings suggest that tumor-somatic cell fusion could be a promising target for developing new cancer therapies. Furthermore, this study provides an experimental animal platform to investigate cancer-myeloid fusion and highlights the potential role of tumor-somatic cell fusion in modulating the tumor environment.


Assuntos
Neoplasias , Animais , Neoplasias/genética , Neoplasias/patologia , Células Híbridas/patologia , Fusão Celular , Comunicação Celular , Macrófagos/patologia
6.
Exp Cell Res ; 418(1): 113233, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35659971

RESUMO

Mitochondrial cloning is a promising approach to achieve homoplasmic mitochondrial DNA (mtDNA) mutations. We previously developed a microfluidic device that performs single mitochondrion transfer from a mtDNA-intact cell to a mtDNA-less (ρ0) cell by promoting cytoplasmic connection through a microtunnel between them. In the present study, we described a method for generating transmitochondrial cybrids using the microfluidic device. After achieving mitochondrial transfer between HeLa cells and thymidine kinase-deficient ρ0143B cells using the microfluidic device, selective culture was carried out using a pyruvate and uridine (PU)-absent and 5-bromo-2'-deoxyuridine-supplemented culture medium. The resulting cells contained HeLa mtDNA and 143B nuclei, but both 143B mtDNA and HeLa nuclei were absent in these cells. Additionally, these cells showed lower lactate production than parent ρ0143B cells and disappearance of PU auxotrophy for cell growth. These results suggest successful generation of transmitochondrial cybrids using the microfluidic device. Furthermore, we succeeded in selective harvest of generated transmitochondrial cybrids under a PU-supplemented condition by removing unfused ρ0 cells with puromycin-based selection in the microfluidic device.


Assuntos
DNA Mitocondrial , Dispositivos Lab-On-A-Chip , Citoplasma/metabolismo , DNA Mitocondrial/genética , Células HeLa , Humanos , Células Híbridas , Mitocôndrias/genética
7.
Cell Mol Life Sci ; 79(5): 283, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513611

RESUMO

Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson's disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.


Assuntos
DNA Mitocondrial , Doença de Parkinson , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Células Híbridas/metabolismo , Células Híbridas/patologia , Mitocôndrias/metabolismo , Doença de Parkinson/patologia
8.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446202

RESUMO

This study uses personalized chronic lymphoblastic leukemia (CLL) cybrid cells to test various drugs/agents designed to improve mitochondrial function and cell longevity. Age-matched control (NL) and CLL cybrids were created. The NL and CLL cybrids were treated with ibrutinib (Ibr-10 µM), mitochondrial-targeted nutraceuticals such as alpha lipoic acid (ALA-1 mM), amla (Aml-300 µg), melatonin (Mel-1 mM), resveratrol (Res-100 µM) alone, or a combination of ibrutinib with nutraceuticals (Ibr + ALA, Ibr + Aml, Ibr + Mel, or Ibr + Res) for 48 h. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide), H2DCFDA(2',7' Dichlorodihydrofluorescein diacetate), and JC1 assays were used to measure the cellular metabolism, intracellular ROS levels, and mitochondrial membrane potential (∆ψm), respectively. The expression levels of genes associated with antioxidant enzymes (SOD2, GPX3, and NOX4), apoptosis (BAX and CASP3), and inflammation (IL6, IL-1ß, TNFα, and TGFß) were measured using quantitative real-time PCR (qRT-PCR). CLL cybrids treated with Ibr + ALA, Ibr + Aml, Ibr + Mel, and Ibr + Res had (a) reduced cell survivability, (b) increased ROS production, (c) increased ∆ψm levels, (d) decreased antioxidant gene expression levels, and (e) increased apoptotic and inflammatory genes in CLL cybrids when compared with ibrutinib-alone-treated CLL cybrids. Our findings show that the addition of nutraceuticals makes the CLL cybrids more pro-apoptotic with decreased cell survival compared with CLL cybrids exposed to ibrutinib alone.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Mitocôndrias , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Híbridas , Suplementos Nutricionais , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos
9.
Small ; 18(50): e2205704, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319475

RESUMO

Triboelectric nanogenerators (TENGs) and dielectric elastomer generators (DEGs) are potentially promising energy conversion technologies, but they still have limitations due to their own intrinsic characteristics, including the low energy output of TENGs caused by the air breakdown effect, and external polarization voltage requirement for DEGs, which severely limit their practical applications. Herein, coupling TENG with DEG is proposed to build a mutual beneficial self-excitation hybrid generator (named TDHG) for harvesting distributed and low-quality mechanical energy (high entropy energy). Experimental results demonstrate that the output charges of this TDHG are enhanced by fivefold of that of the conventional charge-excitation TENG, and continuous operation of DEG is also realized by simple mechanical triggering. More importantly, owing to the high peak power contributed by TENG and the long output pulse duration guaranteed by DEG, the TDHG realizes a much higher energy conversion efficiency of 32% in comparison to either the TENG (3.6%) or DEG (13.2%). This work proposes a new design concept for hybridized energy harvester toward highly efficient mechanical energy harvesting.


Assuntos
Entropia , Frequência Cardíaca , Células Híbridas , Fenômenos Físicos
10.
Langmuir ; 38(17): 5296-5306, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35109658

RESUMO

We study the fusion of homogeneous cell aggregates and of hybrid aggregates combining cells and microparticles. In all cases, we find that the contact area does not vary linearly over time, as observed for liquid drops, but rather it follows a power law in t2/3. This result is interpreted by generalizing the fusion model of soft viscoelastic solid balls to viscoelastic liquid balls, akin to jelly pearls. We also explore the asymmetric fusion between a homogeneous aggregate and a hybrid aggregate. This latter experiment allows the determination of the self-diffusion coefficient of the cells in a tissue by following the spatial distribution of internalized particles in the cells.


Assuntos
Células Híbridas
11.
Biochemistry (Mosc) ; 87(4): 380-390, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35527376

RESUMO

Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords "hybrid cancer cells", "cancer cell fusion", etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.


Assuntos
Células Neoplásicas Circulantes , Contagem de Células , Fusão Celular , Humanos , Células Híbridas/patologia , Células Neoplásicas Circulantes/patologia
12.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555709

RESUMO

Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.


Assuntos
Carcinogênese , Células-Tronco Neoplásicas , Humanos , Fusão Celular , Linhagem Celular Tumoral , Células Híbridas , Carcinogênese/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
13.
Ann Surg Oncol ; 28(13): 8567-8578, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34365557

RESUMO

BACKGROUND: Real-time monitoring of treatment response with a liquid biomarker has potential to inform treatment decisions for patients with rectal adenocarcinoma (RAC), esophageal adenocarcinoma (EAC), and colorectal liver metastasis (CRLM). Circulating hybrid cells (CHCs), which have both immune and tumor cell phenotypes, are detectable in the peripheral blood of patients with gastrointestinal cancers, but their potential as an indicator of treatment response is unexplored. METHODS: Peripheral blood specimens were collected from RAC and EAC patients after neoadjuvant therapy (NAT) or longitudinally during therapy and evaluated for CHC levels by immunostaining. Receiver operating characteristics (ROCs) and the Kaplan-Meier method were used to analyze the CHC level as a predictor of pathologic response to NAT and disease-specific survival (DSS), respectively. RESULTS: Patients with RAC (n = 23) and EAC (n = 34) were sampled on the day of resection, and 11 patients (32%) demonstrated a pathologic complete response (pCR) to NAT. On ROC analysis, CHC levels successfully discriminated pCR from non-pCR with an area under the curve of 0.82 (95% confidence interval [CI], 0.71-0.92; P < 0.001). Additionally, CHC levels in the EAC patients correlated with residual nodal involvement (P = 0.026) and 1-year DSS (P = 0.029). The patients with RAC who were followed longitudinally during NAT (n = 2) and hepatic arterial infusion therapy for CRLM (n = 2) had CHC levels that decreased with therapy response and increased before clinical evidence of disease progression. CONCLUSION: Circulating hybrid cells are a novel blood-based biomarker with potential for monitoring treatment response and disease progression to help guide decisions for further systemic therapy, definitive resection, and post-therapy surveillance. Additional validation studies of CHCs are warranted.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/terapia , Biomarcadores , Neoplasias Esofágicas/terapia , Humanos , Células Híbridas , Terapia Neoadjuvante
14.
BMC Cancer ; 21(1): 241, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678155

RESUMO

BACKGROUND: Cancer stem/Initiating cell (CS/IC) hypothesis argues that CS/ICs are responsible of tumour initiation, drug resistance, metastasis or disease relapse. Their detection in several cancers supports this concept. However, their origin is still misunderstood. Cell fusion is shown to take part in the formation of CS/ICs, i.e. fusion between mesenchymal stem cell and cancer cell. In a previous paper, we described that fusion leads to hybrids with metastatic capacity. This process triggered genomic rearrangements in hybrid cells together with increased metastasis development. Here, we hypothesize that cell fusion could be strong enough to provoke a cellular reprogramming and the acquisition of CS/IC properties, promoting metastasis formation. METHODS: After spontaneous cell fusion between E6E7 (IMR90 with the oncogenes E6 and E7) and RST (IMR90 fully transformed) cell lines, hybrid cells were selected by dual antibiotic selection. Cancer stem cells capacities were evaluated regarding capacity to form spheres, expression of stem cell markers and the presence of ALDHhigh cells. RESULTS: Our data show that after cell fusion, all hybrids contain a percentage of cells with CS/ICs properties, regarding. Importantly, we lastly showed that NANOG inhibition in H1 hybrid decreases this migration capacity while having no effect on the corresponding parental cells. CONCLUSIONS: Altogether these results indicate that the combination of CS/ICs properties and genomic rearrangement in hybrids is likely to be key to tumour progression.


Assuntos
Carcinogênese/patologia , Reprogramação Celular , Células-Tronco Mesenquimais/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Fusão Celular , Linhagem Celular Tumoral , Humanos , Células Híbridas , Esferoides Celulares
15.
BMC Cancer ; 21(1): 863, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320948

RESUMO

BACKGROUND: Cell-to-cell fusion is emerging as a key element of the metastatic process in various cancer types. We recently showed that hybrids made from the spontaneous merging of pre-malignant (IMR90 E6E7, i.e. E6E7) and malignant (IMR90 E6E7 RST, i.e. RST) mesenchymal cells recapitulate the main features of human undifferentiated pleomorphic sarcoma (UPS), with a highly rearranged genome and increased spreading capacities. To better characterize the intrinsic properties of these hybrids, we investigated here their metabolic energy profile compared to their parents. RESULTS: Our results unveiled that hybrids harbored a Warburg-like metabolism, like their RST counterparts. However, hybrids displayed a much greater metabolic activity, enhancing glycolysis to proliferate. Interestingly, modifying the metabolic environmental conditions through the use of 5-aminoimidazole-4-carbox-amide-1-ß-D-ribofuranoside (AICAR), an activator of the 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK), specifically reduced the growth of hybrids, and also abrogated the invasive capacity of hybrids displaying enhanced glycolysis. Furthermore, AICAR efficiently blocked the tumoral features related to the aggressiveness of human UPS cell lines. CONCLUSION: Altogether, our findings strongly suggest that hybrids rely on higher energy flux to proliferate and that a drug altering this metabolic equilibrium could impair their survival and be potentially considered as a novel therapeutic strategy.


Assuntos
Metabolismo Energético , Células Gigantes/metabolismo , Células Gigantes/patologia , Células Híbridas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Invasividade Neoplásica , Neoplasias/genética , Processos Neoplásicos
16.
Exp Eye Res ; 203: 108287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075294

RESUMO

PURPOSE: Intravitreal injections of anti-vascular endothelial growth factor (VEGF) treatments are currently used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, and macular edema. Chronic, repetitive treatments with anti-VEGF may have unintended consequences beyond the inhibition of angiogenesis. Most recently, clinical trials have been conducted with risuteganib (RSG, Luminate®), which is anti-angiogenic and has neuroprotective and anti-inflammatory properties. Mitochondrial damage and dysfunction play a major role in development of AMD. Transmitochondrial cybrids are cell lines established by fusing human retinal pigment epithelial (RPE) cells that are Rho0 (lacking mtDNA) with platelets isolated from AMD subjects or age-matched normal subjects. Cybrid cell lines have identical nuclei but mitochondria from different subjects, enabling investigation of the functional consequences of damaged AMD mitochondria. The present study compares the responses of AMD cybrids treated with bevacizumab (Bmab, Avastin®) versus risuteganib (RSG, Luminate®). METHODS: Cybrids were created by fusing mtDNA depleted ARPE-19 cells with platelets from AMD or age-matched normal patients. AMD (n = 5) and normal (n = 3) cybrids were treated for 48 h with or without 1x clinical dose of 1.25 mg/50 µl (25,000 µg/ml) of Bmab or 1.0 mg/50 µl (20,000 µg/ml) of RSG. Cultures were analyzed for levels of cleaved caspase 3/7 and NucLight Rapid Red staining (IncuCyte® Live Cell Imager), mitochondrial membrane potential (ΔΨm, JC1 assay) or reactive oxygen species (ROS, H2DCFDA assay). Expression levels of genes related to the following pathways were analyzed with qRT-PCR: Apoptosis (BAX, BCL2L13, CASP-3, -7, -9); angiogenesis (VEGFA, HIF1α, PDGF); integrins (ITGB-1, -3, -5, ITGA-3, -5, -V); mitochondrial biogenesis (PGC1α, POLG); oxidative stress (SOD2, GPX3, NOX4); inflammation (IL-6, -18, -1ß, IFN-ß1); and signaling (P3KCA, PI3KR1). Statistical analyses were performed using GraphPad Prism software. RESULTS: The untreated AMD cybrids had significantly higher levels of cleaved caspase 3/7 compared to the untreated normal cybrids. The Bmab-treated AMD cybrids showed elevated levels of cleaved caspase 3/7 compared to untreated AMD or RSG-treated AMD cybrids. The Bmab-treated cybrids had lower ΔΨm compared to untreated AMD or RSG-treated AMD cybrids. The ROS levels were not changed with Bmab or RSG treatment. Results showed that Bmab-treated cybrids had higher expression levels of inflammatory (IL-6, IL1-ß), oxidative stress (NOX4) and angiogenesis (VEGFA) genes compared to untreated AMD, while RSG-treated cybrids had lower expression levels of apoptosis (BAX), angiogenesis (VEGFA) and integrin (ITGB1) genes. CONCLUSIONS: These data suggest that the mechanism(s) of action of RSG, an integrin regulator, and Bmab, a recombinant monoclonal antibody, affect the AMD RPE cybrid cells differently, with the former having more anti-apoptosis properties, which may be desirable in treating degenerative ocular diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Plaquetas/citologia , Células Híbridas/efeitos dos fármacos , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/citologia , Degeneração Macular Exsudativa/sangue , Idoso , Idoso de 80 Anos ou mais , Plaquetas/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , DNA Mitocondrial/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Células Híbridas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
17.
Genomics ; 112(3): 2379-2384, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31962144

RESUMO

Haploid cell lines are a valuable research tool with broad applicability for genetic assays. As such the fully haploid human cell line, eHAP1, has been used in a wide array of studies. However, the absence of a corresponding reference genome sequence for this cell line has limited the potential for more widespread applications to experiments dependent on available sequence, like capture-clone methodologies. We generated ~15× coverage Nanopore long reads from ten GridION flowcells and utilized this data to assemble a de novo draft genome using minimap and miniasm and subsequently polished using Racon. This assembly was further polished using previously generated, low-coverage, Illumina short reads with Pilon and ntEdit. This resulted in a hybrid eHAP1 assembly with >90% complete BUSCO scores. We further assessed the eHAP1 long read data for structural variants using Sniffles and identify a variety of rearrangements, including a previously established Philadelphia translocation. Finally, we demonstrate how some of these variants overlap open chromatin regions, potentially impacting regulatory regions. By integrating both long and short reads, we generated a high-quality reference assembly for eHAP1 cells. The union of long and short reads demonstrates the utility in combining sequencing platforms to generate a high-quality reference genome de novo solely from low coverage data. We expect the resulting eHAP1 genome assembly to provide a useful resource to enable novel experimental applications in this important model cell line.


Assuntos
Linhagem Celular , Genoma Humano , Haploidia , Variação Estrutural do Genoma , Humanos , Células Híbridas , Sequenciamento por Nanoporos , Padrões de Referência
18.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063996

RESUMO

Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human-Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , Epigênese Genética/genética , Células Híbridas/fisiologia , Linhagem Celular , Metilação de DNA/genética , DNA de Plantas/genética , Epigenoma/genética , Epigenômica/métodos , Genoma de Planta/genética , Humanos , Metiltransferases/genética , Sequências Repetitivas de Ácido Nucleico/genética
19.
Hum Mol Genet ; 27(11): 1999-2011, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579248

RESUMO

Mutations in mitochondrial DNA (mtDNA) have been associated with Leber's hereditary optic neuropathy (LHON) and their pathophysiology remains poorly understood. In this study, we demonstrated that a missense mutation (m.12338T>C, p.1M>T) in the ND5 gene contributed to the pathogenesis of LHON. The m.12338T>C mutation affected the first methionine (Met1) with a threonine and shortened two amino acids of ND5. We therefore hypothesized that the mutated ND5 perturbed the structure and function of complex I. Using the cybrid cell models, generated by fusing mtDNA-less (ρ°) cells with enucleated cells from LHON patients carrying the m.12338T>C mutation and a control subject belonging to the same mtDNA haplogroup, we demonstrated that the m.12338T>C mutation caused the reduction of ND5 polypeptide, perturbed assemble and activity of complex I. Furthermore, the m.12338T>C mutation caused respiratory deficiency, diminished mitochondrial adenosine triphosphate levels and membrane potential and increased the production of reactive oxygen species. The m.12338T>C mutation promoted apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 9, 3, 7 and Poly ADP ribose polymerase in the cybrids carrying the m.12338T>C mutation, as compared with control cybrids. Moreover, we also document the involvement of m.12338T>C mutation in decreased mitophagy, as showed by reduced levels of autophagy protein light chain 3 and accumulation of autophagic substrate p62 in the in mutant cybrids as compared with control cybrids. These data demonstrated the direct link between mitochondrial dysfunction caused by complex I mutation and apoptosis or mitophagy. Our findings may provide new insights into the pathophysiology of LHON.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Atrofia Óptica Hereditária de Leber/genética , Relação Estrutura-Atividade , Apoptose/genética , DNA Mitocondrial/genética , Humanos , Células Híbridas , Mitofagia/genética , Mutação de Sentido Incorreto/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia
20.
PLoS Pathog ; 14(5): e1007073, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782541

RESUMO

Neutrophils are classically defined as terminally differentiated, short-lived cells; however, neutrophils can be long-lived with phenotypic plasticity. During inflammation, a subset of neutrophils transdifferentiate into a population called neutrophil-DC hybrids (PMN-DCs) having properties of both neutrophils and dendritic cells. While these cells ubiquitously appear during inflammation, the role of PMN-DCs in disease remains poorly understood. We observed the differentiation of PMN-DCs in pre-clinical murine models of fungal infection: blastomycosis, aspergillosis and candidiasis. Using reporter strains of fungal viability, we found that PMN-DCs associate with fungal cells and kill them more efficiently than undifferentiated canonical neutrophils. During pulmonary blastomycosis, PMN-DCs comprised less than 1% of leukocytes yet contributed up to 15% of the fungal killing. PMN-DCs displayed higher expression of pattern recognition receptors, greater phagocytosis, and heightened production of reactive oxygen species compared to canonical neutrophils. PMN-DCs also displayed prominent NETosis. To further study PMN-DC function, we exploited a granulocyte/macrophage progenitor (GMP) cell line, generated PMN-DCs to over 90% purity, and used them for adoptive transfer and antigen presentation studies. Adoptively transferred PMN-DCs from the GMP line enhanced protection against systemic infection in vivo. PMN-DCs pulsed with antigen activated fungal calnexin-specific transgenic T cells in vitro and in vivo, promoting the production of interferon-γ and interleukin-17 in these CD4+ T cells. Through direct fungal killing and induction of adaptive immunity, PMN-DCs are potent effectors of antifungal immunity and thereby represent innovative cell therapeutic targets in treating life-threatening fungal infections.


Assuntos
Blastomicose/imunologia , Células Dendríticas/imunologia , Células Híbridas/imunologia , Infecções Fúngicas Invasivas/imunologia , Neutrófilos/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno , Aspergillus fumigatus/imunologia , Blastomyces/imunologia , Células da Medula Óssea/imunologia , Candida albicans/imunologia , Citometria de Fluxo , Rim/microbiologia , Rim/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias Fúngicas/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Óxido Nitroso/análise , Espécies Reativas de Oxigênio/análise , Baço/citologia , Baço/imunologia , Baço/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA