Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.898
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(2): 409-427.e19, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242086

RESUMO

Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.


Assuntos
Encéfalo , Memória , Animais , Camundongos , Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Cocaína/farmacologia , Cocaína/metabolismo , Memória/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Cell ; 186(22): 4885-4897.e14, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804832

RESUMO

Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.


Assuntos
Hipocampo , Córtex Pré-Frontal , Humanos , Encéfalo , Lobo Frontal , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Córtex Pré-Frontal/fisiologia
3.
Cell ; 185(9): 1602-1617.e17, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35487191

RESUMO

Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.


Assuntos
Hipocampo , Córtex Pré-Frontal , Comportamento Exploratório , Hipocampo/fisiologia , Interneurônios/metabolismo , Córtex Pré-Frontal/fisiologia , Peptídeo Intestinal Vasoativo
4.
Cell ; 184(10): 2750-2766.e17, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33861951

RESUMO

Cognitive flexibility, the ability to alter strategy according to changing stimulus-response-reward relationships, is critical for updating learned behavior. Attentional set-shifting, a test of cognitive flexibility, depends on the activity of prefrontal cortex (PFC). It remains unclear, however, what role PFC neurons play to support set-shifting. Using optogenetics and two-photon calcium imaging, we demonstrate that medial PFC activity does not bias sensorimotor responses during set-shifting, but rather enables set-shifting by encoding trial feedback information, a role it has been known to play in other contexts. Unexpectedly, the functional properties of PFC cells did not vary with their efferent projection targets. Instead, representations of trial feedback formed a topological gradient, with cells more strongly selective for feedback information located further from the pial surface, where afferent input from the anterior cingulate cortex was denser. These findings identify a critical role for deep PFC projection neurons in enabling set-shifting through behavioral feedback monitoring.


Assuntos
Cognição/fisiologia , Neurorretroalimentação , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Cell ; 184(14): 3748-3761.e18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171308

RESUMO

Lateral intraparietal (LIP) neurons represent formation of perceptual decisions involving eye movements. In circuit models for these decisions, neural ensembles that encode actions compete to form decisions. Consequently, representation and readout of the decision variables (DVs) are implemented similarly for decisions with identical competing actions, irrespective of input and task context differences. Further, DVs are encoded as partially potentiated action plans through balance of activity of action-selective ensembles. Here, we test those core principles. We show that in a novel face-discrimination task, LIP firing rates decrease with supporting evidence, contrary to conventional motion-discrimination tasks. These opposite response patterns arise from similar mechanisms in which decisions form along curved population-response manifolds misaligned with action representations. These manifolds rotate in state space based on context, indicating distinct optimal readouts for different tasks. We show similar manifolds in lateral and medial prefrontal cortices, suggesting similar representational geometry across decision-making circuits.


Assuntos
Tomada de Decisões , Percepção de Movimento/fisiologia , Lobo Parietal/fisiologia , Animais , Comportamento Animal , Julgamento , Macaca mulatta , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Psicofísica , Análise e Desempenho de Tarefas , Fatores de Tempo
6.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33338423

RESUMO

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Assuntos
Cognição/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Animais , Cálcio/metabolismo , Comportamento de Escolha , Sinais (Psicologia) , Imageamento Tridimensional , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Odorantes , Optogenética , Substância Cinzenta Periaquedutal/fisiologia , Recompensa , Análise de Célula Única , Transcriptoma/genética
7.
Cell ; 182(1): 112-126.e18, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504542

RESUMO

Every decision we make is accompanied by a sense of confidence about its likely outcome. This sense informs subsequent behavior, such as investing more-whether time, effort, or money-when reward is more certain. A neural representation of confidence should originate from a statistical computation and predict confidence-guided behavior. An additional requirement for confidence representations to support metacognition is abstraction: they should emerge irrespective of the source of information and inform multiple confidence-guided behaviors. It is unknown whether neural confidence signals meet these criteria. Here, we show that single orbitofrontal cortex neurons in rats encode statistical decision confidence irrespective of the sensory modality, olfactory or auditory, used to make a choice. The activity of these neurons also predicts two confidence-guided behaviors: trial-by-trial time investment and cross-trial choice strategy updating. Orbitofrontal cortex thus represents decision confidence consistent with a metacognitive process that is useful for mediating confidence-guided economic decisions.


Assuntos
Comportamento/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento de Escolha/fisiologia , Tomada de Decisões , Modelos Biológicos , Neurônios/fisiologia , Ratos Long-Evans , Sensação/fisiologia , Análise e Desempenho de Tarefas , Fatores de Tempo
8.
Cell ; 183(2): 522-536.e19, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32997977

RESUMO

Working memory is a form of short-term memory that involves maintaining and updating task-relevant information toward goal-directed pursuits. Classical models posit persistent activity in prefrontal cortex (PFC) as a primary neural correlate, but emerging views suggest additional mechanisms may exist. We screened ∼200 genetically diverse mice on a working memory task and identified a genetic locus on chromosome 5 that contributes to a substantial proportion (17%) of the phenotypic variance. Within the locus, we identified a gene encoding an orphan G-protein-coupled receptor, Gpr12, which is sufficient to drive substantial and bidirectional changes in working memory. Molecular, cellular, and imaging studies revealed that Gpr12 enables high thalamus-PFC synchrony to support memory maintenance and choice accuracy. These findings identify an orphan receptor as a potent modifier of short-term memory and supplement classical PFC-based models with an emerging thalamus-centric framework for the mechanistic understanding of working memory.


Assuntos
Memória de Curto Prazo/fisiologia , Receptores Acoplados a Proteínas G/genética , Tálamo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell ; 183(4): 954-967.e21, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058757

RESUMO

The curse of dimensionality plagues models of reinforcement learning and decision making. The process of abstraction solves this by constructing variables describing features shared by different instances, reducing dimensionality and enabling generalization in novel situations. Here, we characterized neural representations in monkeys performing a task described by different hidden and explicit variables. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training, which requires a particular geometry of neural representations. Neural ensembles in prefrontal cortex, hippocampus, and simulated neural networks simultaneously represented multiple variables in a geometry reflecting abstraction but that still allowed a linear classifier to decode a large number of other variables (high shattering dimensionality). Furthermore, this geometry changed in relation to task events and performance. These findings elucidate how the brain and artificial systems represent variables in an abstract format while preserving the advantages conferred by high shattering dimensionality.


Assuntos
Hipocampo/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Animais , Comportamento Animal , Mapeamento Encefálico , Simulação por Computador , Hipocampo/fisiologia , Aprendizagem , Macaca mulatta , Masculino , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Reforço Psicológico , Análise e Desempenho de Tarefas
10.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661754

RESUMO

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Assuntos
Tonsila do Cerebelo/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Adulto , Animais , Evolução Biológica , Criança , Pré-Escolar , Cognição/fisiologia , Emoções/fisiologia , Feminino , Humanos , Macaca , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie
11.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29731170

RESUMO

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal , Condicionamento Clássico , Fenômenos Eletrofisiológicos , Medo , Luz , Masculino , Memória/fisiologia , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia
12.
Cell ; 173(1): 166-180.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502969

RESUMO

Brain-wide fluctuations in local field potential oscillations reflect emergent network-level signals that mediate behavior. Cracking the code whereby these oscillations coordinate in time and space (spatiotemporal dynamics) to represent complex behaviors would provide fundamental insights into how the brain signals emotional pathology. Using machine learning, we discover a spatiotemporal dynamic network that predicts the emergence of major depressive disorder (MDD)-related behavioral dysfunction in mice subjected to chronic social defeat stress. Activity patterns in this network originate in prefrontal cortex and ventral striatum, relay through amygdala and ventral tegmental area, and converge in ventral hippocampus. This network is increased by acute threat, and it is also enhanced in three independent models of MDD vulnerability. Finally, we demonstrate that this vulnerability network is biologically distinct from the networks that encode dysfunction after stress. Thus, these findings reveal a convergent mechanism through which MDD vulnerability is mediated in the brain.


Assuntos
Encéfalo/fisiologia , Depressão/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos Implantados , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Ketamina/farmacologia , Aprendizado de Máquina , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Estresse Psicológico
13.
Cell ; 171(7): 1663-1677.e16, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29224779

RESUMO

Social behaviors are crucial to all mammals. Although the prelimbic cortex (PL, part of medial prefrontal cortex) has been implicated in social behavior, it is not clear which neurons are relevant or how they contribute. We found that PL contains anatomically and molecularly distinct subpopulations that target three downstream regions that have been implicated in social behavior: the nucleus accumbens (NAc), amygdala, and ventral tegmental area. Activation of NAc-projecting PL neurons (PL-NAc), but not the other subpopulations, decreased the preference for a social target. To determine what information PL-NAc neurons convey, we selectively recorded from them and found that individual neurons were active during social investigation, but only in specific spatial locations. Spatially specific manipulation of these neurons bidirectionally regulated the formation of a social-spatial association. Thus, the unexpected combination of social and spatial information within the PL-NAc may contribute to social behavior by supporting social-spatial learning.


Assuntos
Sistema Límbico , Neurônios/citologia , Núcleo Accumbens/citologia , Córtex Pré-Frontal/citologia , Comportamento Social , Comportamento Espacial , Tonsila do Cerebelo/fisiologia , Animais , Aprendizagem , Camundongos , Vias Neurais , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Área Tegmentar Ventral/fisiologia
14.
Cell ; 164(1-2): 208-218, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771492

RESUMO

While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing.


Assuntos
Atenção , Neurônios/citologia , Córtex Pré-Frontal/citologia , Animais , Comportamento Animal , Cognição , Ritmo Gama , Camundongos , Optogenética , Parvalbuminas/metabolismo , Córtex Pré-Frontal/fisiologia
15.
Cell ; 161(6): 1243-4, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046432

RESUMO

Cost-benefit analysis in decision making takes place in everyday life for animals and humans alike. In this issue, a neural circuit specific for modulating these behaviors is identified in rats and reveals elusive functional distinctions between long-mysterious anatomical features of the brain.


Assuntos
Comportamento de Escolha , Conflito Psicológico , Tomada de Decisões , Córtex Pré-Frontal/fisiologia , Animais
16.
Cell ; 161(6): 1320-33, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26027737

RESUMO

A striking neurochemical form of compartmentalization has been found in the striatum of humans and other species, dividing it into striosomes and matrix. The function of this organization has been unclear, but the anatomical connections of striosomes indicate their relation to emotion-related brain regions, including the medial prefrontal cortex. We capitalized on this fact by combining pathway-specific optogenetics and electrophysiology in behaving rats to search for selective functions of striosomes. We demonstrate that a medial prefronto-striosomal circuit is selectively active in and causally necessary for cost-benefit decision-making under approach-avoidance conflict conditions known to evoke anxiety in humans. We show that this circuit has unique dynamic properties likely reflecting striatal interneuron function. These findings demonstrate that cognitive and emotion-related functions are, like sensory-motor processing, subject to encoding within compartmentally organized representations in the forebrain and suggest that striosome-targeting corticostriatal circuits can underlie neural processing of decisions fundamental for survival.


Assuntos
Comportamento de Escolha , Conflito Psicológico , Tomada de Decisões , Córtex Pré-Frontal/fisiologia , Animais , Núcleo Caudado/citologia , Núcleo Caudado/fisiologia , Meio Ambiente , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Aprendizagem em Labirinto , Córtex Pré-Frontal/citologia , Ratos
17.
Nature ; 631(8021): 610-616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961302

RESUMO

From sequences of speech sounds1,2 or letters3, humans can extract rich and nuanced meaning through language. This capacity is essential for human communication. Yet, despite a growing understanding of the brain areas that support linguistic and semantic processing4-12, the derivation of linguistic meaning in neural tissue at the cellular level and over the timescale of action potentials remains largely unknown. Here we recorded from single cells in the left language-dominant prefrontal cortex as participants listened to semantically diverse sentences and naturalistic stories. By tracking their activities during natural speech processing, we discover a fine-scale cortical representation of semantic information by individual neurons. These neurons responded selectively to specific word meanings and reliably distinguished words from nonwords. Moreover, rather than responding to the words as fixed memory representations, their activities were highly dynamic, reflecting the words' meanings based on their specific sentence contexts and independent of their phonetic form. Collectively, we show how these cell ensembles accurately predicted the broad semantic categories of the words as they were heard in real time during speech and how they tracked the sentences in which they appeared. We also show how they encoded the hierarchical structure of these meaning representations and how these representations mapped onto the cell population. Together, these findings reveal a finely detailed cortical organization of semantic representations at the neuron scale in humans and begin to illuminate the cellular-level processing of meaning during language comprehension.


Assuntos
Compreensão , Neurônios , Córtex Pré-Frontal , Semântica , Análise de Célula Única , Percepção da Fala , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compreensão/fisiologia , Neurônios/fisiologia , Fonética , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Percepção da Fala/fisiologia , Narração
18.
Nature ; 633(8031): 864-871, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169188

RESUMO

The ability to learn novel items depends on brain functions that store information about items classified by their associated meanings and outcomes1-4, but the underlying neural circuit mechanisms of this process remain poorly understood. Here we show that deep layers of the lateral entorhinal cortex (LEC) contain two groups of 'item-outcome neurons': one developing activity for rewarded items during learning, and another for punished items. As mice learned an olfactory item-outcome association, we found that the neuronal population of LEC layers 5/6 (LECL5/6) formed an internal map of pre-learned and novel items, classified into dichotomic rewarded versus punished groups. Neurons in the medial prefrontal cortex (mPFC), which form a bidirectional loop circuit with LECL5/6, developed an equivalent item-outcome rule map during learning. When LECL5/6 neurons were optogenetically inhibited, tangled mPFC representations of novel items failed to split into rewarded versus punished groups, impairing new learning by mice. Conversely, when mPFC neurons were inhibited, LECL5/6 representations of individual items were held completely separate, disrupting both learning and retrieval of associations. These results suggest that LECL5/6 neurons and mPFC neurons co-dependently encode item memory as a map of associated outcome rules.


Assuntos
Córtex Entorrinal , Aprendizagem , Neurônios , Córtex Pré-Frontal , Recompensa , Animais , Masculino , Camundongos , Córtex Entorrinal/fisiologia , Córtex Entorrinal/citologia , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Punição , Feminino
19.
Nature ; 626(7999): 603-610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297120

RESUMO

Humans are capable of generating extraordinarily diverse articulatory movement combinations to produce meaningful speech. This ability to orchestrate specific phonetic sequences, and their syllabification and inflection over subsecond timescales allows us to produce thousands of word sounds and is a core component of language1,2. The fundamental cellular units and constructs by which we plan and produce words during speech, however, remain largely unknown. Here, using acute ultrahigh-density Neuropixels recordings capable of sampling across the cortical column in humans, we discover neurons in the language-dominant prefrontal cortex that encoded detailed information about the phonetic arrangement and composition of planned words during the production of natural speech. These neurons represented the specific order and structure of articulatory events before utterance and reflected the segmentation of phonetic sequences into distinct syllables. They also accurately predicted the phonetic, syllabic and morphological components of upcoming words and showed a temporally ordered dynamic. Collectively, we show how these mixtures of cells are broadly organized along the cortical column and how their activity patterns transition from articulation planning to production. We also demonstrate how these cells reliably track the detailed composition of consonant and vowel sounds during perception and how they distinguish processes specifically related to speaking from those related to listening. Together, these findings reveal a remarkably structured organization and encoding cascade of phonetic representations by prefrontal neurons in humans and demonstrate a cellular process that can support the production of speech.


Assuntos
Neurônios , Fonética , Córtex Pré-Frontal , Fala , Humanos , Movimento , Neurônios/fisiologia , Fala/fisiologia , Percepção da Fala/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia
20.
Nature ; 625(7996): 743-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233522

RESUMO

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Vias Neurais , Neurônios , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Cálcio/análise , Eletrofisiologia , Ponte/citologia , Ponte/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA