Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(2): e0068622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688672

RESUMO

Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein ß-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of ß-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.


Assuntos
COVID-19 , Mucormicose , Micoses , Humanos , Micafungina/farmacologia , Micafungina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Calcineurina/genética , Calcineurina/farmacologia , SARS-CoV-2 , Mucor/genética , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Micoses/tratamento farmacológico , Serina , Farmacorresistência Fúngica/genética
2.
BMC Neurosci ; 24(1): 59, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932682

RESUMO

BACKGROUND: Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that has no specific treatment except for supportive medical care. JEV is a neurotropic virus that affects the nervous system and triggers inflammation in the brain. METHODS: Melatonin is used as a sleep-inducing agent in neurophysiology and may serve as a protective agent against neurological and neurodegenerative diseases. Herein, we investigated the effects of melatonin and the critical roles of the serine/threonine protein phosphatase calcineurin during JEV infection in SK-N-SH neuroblastoma cells. RESULTS: Melatonin treatment decreased JEV replication and JEV-mediated neurotoxicity. Calcineurin activity was increased by JEV infection and inhibited by melatonin treatment. Through calcineurin regulation, melatonin decreased the JEV-mediated neuroinflammatory response and attenuated JEV-induced autophagy. CONCLUSIONS: Calcineurin inactivation has a protective effect in JEV-infected neuronal cells, and melatonin is a novel resource for the development of anti-JEV agents.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Melatonina , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Calcineurina/farmacologia , Melatonina/farmacologia , Autofagia
3.
Nitric Oxide ; 140-141: 50-57, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659679

RESUMO

Endothelin (ET)-1 is an endothelial-derived peptide that exerts biphasic effects on nitric oxide (NO) levels in endothelial cells such that acute exposure stimulates-while sustained exposure attenuates-NO production. Although the mechanism involved in the decrease in NO generation has been identified but the signaling involved in the acute increase in NO is still unresolved. This was the focus of this study. Our data indicate that exposing pulmonary arterial endothelial cells (PAEC) to ET-1 led to an increase in NO for up to 30min after which levels declined. These effects were attenuated by ET receptor antagonists. The increase in NO correlated with significant increases in pp60Src activity and increases in eNOS phosphorylation at Tyr83 and Ser1177. The ET-1 mediated increase in phosphorylation and NO generation were attenuated by the over-expression of a pp60Src dominant negative mutant. The increase in pp60Src activity correlated with a reduction in the interaction of Caveolin-1 with pp60Src and the calcineurin-mediated dephosphorylation of caveolin-1 at three previously unidentified sites: Thr91, Thr93, and Thr95. The calcineurin inhibitor, Tacrolimus, attenuated the acute increase in pp60Src activity induced by ET-1 and a calcineurin siRNA attenuated the ET-1 mediated increase in eNOS phosphorylation at Tyr83 and Ser1177 as well as the increase in NO. By using a Caveolin-1 celluSpot peptide array, we identified a peptide targeting a sequence located between aa 41-56 as the pp60Src binding region. This peptide fused to the TAT sequence was found to decrease caveolin-pp60Src interaction, increased pp60Src activity, increased eNOS pSer1177 and NO levels in PAEC and induce vasodilation in isolated aortic rings in wildtype but not eNOS knockout mice. Together, our data identify a novel mechanism by which ET-1 acutely increases NO via a calcineurin-mediated dephosphorylation of caveolin-1 and the subsequent stimulation of pp60Src activity, leading to increases in phosphorylation of eNOS at Tyr83 and Ser1177.


Assuntos
Caveolina 1 , Óxido Nítrico , Animais , Camundongos , Calcineurina/metabolismo , Calcineurina/farmacologia , Caveolina 1/genética , Células Cultivadas , Células Endoteliais/metabolismo , Endotelina-1/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação
4.
Pestic Biochem Physiol ; 190: 105311, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740345

RESUMO

The calcium-calcineurin and high-osmolarity glycerol (HOG) pathways play crucial roles in fungal development, pathogenicity, and in responses to various environmental stresses. However, interaction of these pathways in regulating fungicide sensitivity remains largely unknown in phytopathogenic fungi. In this study, we investigated the function of the calcium-calcineurin signalling pathway in Fusarium graminearum, the causal agent of Fusarium head blight. Inhibitors of Ca2+ and calcineurin enhanced antifungal activity of tebuconazole (an azole fungicide) against F. graminearum. Deletion of the putative downstream transcription factor FgCrz1 resulted in significantly increased sensitivity of F. graminearum to tebuconazole. FgCrz1-GFP was translocated to the nucleus upon tebuconazole treatment in a calcineurin-dependent manner. In addition, deletion of FgCrz1 increased the phosphorylation of FgHog1 in response to tebuconazole. Moreover, the calcium-calcineurin and HOG signalling pathways exhibited synergistic effect in regulating pathogenicity and sensitivity of F. graminearum to tebuconazole and multiple other stresses. RNA-seq data revealed that FgCrz1 regulated expression of a set of non-CYP51 genes that are associated with tebuconazole sensitivity, including multidrug transporters, membrane lipid biosynthesis and metabolism, and cell wall organization. Our findings demonstrate that the calcium-calcineurin and HOG pathways act coordinately to orchestrate tebuconazole sensitivity and pathogenicity in F. graminearum, which may provide novel insights in management of Fusarium disease.


Assuntos
Fungicidas Industriais , Fusarium , Glicerol/metabolismo , Cálcio/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Virulência/genética , Concentração Osmolar , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia
5.
Biol Chem ; 403(10): 959-967, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35851441

RESUMO

The aim of this study was to investigate the effect and mechanism of L-theanine (LT) on muscle fiber type transformation in C2C12 myotubes. Our data showed that LT exhibited significantly higher slow oxidative muscle fiber expression and lower glycolytic fibers expression. In addition, LT significantly increased the activities of malate dehydrogenase (MDH) and succinic dehydrogenase (SDH), and decreased lactate dehydrogenase (LDH) activity, the calcineurin (CaN) activity and the protein expressions of nuclear factor of activated T cell 1 (NFATc1), prospero-related homeobox1 (prox1), and calcineurin A (CnA) were significantly increased. However, inhibition of CaN activity by cyclosporine A (CsA) abolished LT-induced increase of slow oxidative muscle fiber expression and decrease of glycolytic fibers expression. Moreover, inhibition of prox1 expression by prox1-siRNA disrupted LT-induced activation of CaN signaling pathway and muscle fiber type transformation. Taken together, these results indicated that LT could promote skeletal muscle fiber type transformation from type II to type I via activation of prox1/CaN signaling pathway.


Assuntos
Fibras Musculares Esqueléticas , Fibras Musculares de Contração Lenta , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Glutamatos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
J Membr Biol ; 255(1): 33-39, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34580765

RESUMO

Cyclosporine A (CsA) is an immunosuppressive drug commonly used to prevent autoimmune diseases. At the same time, CsA is a calcineurin (CaN) inhibitor. It affects the intracellular calcium signaling pathway. The effect of CsA on breast cancer cells, MDA-MB-231, plasma membrane calcium pump 1 (PMCA1), calmodulin (CaM), calcineurin (CaN), and cMyc, which are proteins that affect calcium signaling, were investigated. CsA inhibited the proliferation of MDA-MB-231 cells but did not affect the migration of the cells. After 24 h of incubation, CsA suppressed the PMCA1 protein, which pumps intracellular calcium out of the cell. At the same time, calcium started to accumulate inside the cell and CaM protein was expressed, while PMCA1 was suppressed. The CaN protein was suppressed 72 h after the administration of CsA, but the cMyc protein was expressed. Interestingly, 24 h incubation when the PMCA1 protein is down-regulated after the duration of time, the cMyc protein is also down-regulated. Although the indirect effect of CaN and cMyc is known, this relationship between PMCA1 and cMyc was not known. As a result, it has been shown that CsA affects the PMCA pump by disrupting the intracellular calcium pathway in breast cancer cells.


Assuntos
Neoplasias da Mama , Ciclosporina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio , Ciclosporina/farmacologia , Feminino , Humanos
7.
Plant Cell Environ ; 45(11): 3367-3382, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35984078

RESUMO

Calcium is an important second messenger in plants. The activation of Ca2+ signalling cascades is critical in the activation of adaptive processes in response to environmental stimuli. Root colonization by the growth promoting endophyte Serendipita indica involves the increase of cytosolic Ca2+ levels in Arabidopsis thaliana. Here, we investigated transcriptional changes in Arabidopsis roots during symbiosis with S. indica. RNA-seq profiling disclosed the induction of Calcineurin B-like 7 (CBL7) during early and later phases of the interaction. Consistently, reverse genetic evidence highlighted the functional relevance of CBL7 and tested the involvement of a CBL7-CBL-interacting protein kinase 13 signalling pathway. The loss-of-function of CBL7 abolished the growth promoting effect and affected root colonization. The transcriptomics analysis of cbl7 revealed the involvement of this Ca2+ sensor in activating plant defense responses. Furthermore, we report on the contribution of CBL7 to potassium transport in Arabidopsis. We analysed K+ contents in wild-type and cbl7 plants and observed a significant increase of K+ in roots of cbl7 plants, while shoot tissues demonstrated K+ depletion. Taken together, our work associates CBL7 with an important role in the mutual interaction between Arabidopsis and S. indica and links CBL7 to K+ transport.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Basidiomycota , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Basidiomycota/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Cálcio/metabolismo , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Raízes de Plantas/metabolismo , Plantas/metabolismo , Potássio/metabolismo , Proteínas Quinases/metabolismo , Simbiose
8.
Anticancer Drugs ; 33(5): 489-501, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324524

RESUMO

A hypoxic tumor microenvironment (TME) promotes cancer progression, yet its value as a therapeutic target remains underexploited. Tripartite motif-containing 72 (TRIM72) may protect cells against various stresses including hypoxia. Recently, low TRIM72 expression has been implicated in cancer progression. However, the biological role and molecular mechanism of TRIM72 in breast cancer (BC) remain unclear. Herein, we analyzed the TRIM72 expression in BC tissue and cell lines by western blot (WB) and quantitative reverse transcription-PCR. We established the overexpression of TRIM72 using plasmids and lentiviral-mediated upregulation, as well as downregulation of protein phosphatase 3 catalytic subunit alpha (PPP3CA) by siRNA. The tumor-suppressive roles of TRIM72 were assessed on BT549 and MDA-MB-231 cells by MTS, Transwell, and flow cytometry assays in vitro and in xenografted tumors in vivo. The molecular mechanism of TRIM72 was investigated by luciferase reporter and co-immunoprecipitation (Co-IP) assay. Lactate production was measured by ELISA under hypoxic environments induced by CoCl2. Moreover, the expression of PI3K/Akt/mTOR pathway-associated proteins was detected by WB in BC cells. Results showed that TRIM72 was downregulated in BC. Overexpression of TRIM72 inhibited tumor proliferation and invasion in vitro and in a xenograft tumor model. Mechanistically, PPP3CA altered the inhibitory effects of TRIM72 on hypoxia-induced lactate production and monocarboxylate transporter 4-promoter activity, as well as the effect of the PI3K/Akt/mTOR signaling pathway. Our study suggests that TRIM72 modulates the TME and plays tumor-suppressive roles in BC progression. Therefore, TRIM72 may serve as a potential therapeutic target in BC.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Calcineurina/farmacologia , Calcineurina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Hipóxia , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico , Transportadores de Ácidos Monocarboxílicos , Proteínas Musculares , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido , Microambiente Tumoral
9.
Cell Biol Toxicol ; 38(3): 409-426, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34023961

RESUMO

Bisphenol F (BPF) is a replacement to bisphenol A, which has been extensively used in industrial manufacturing. Its wide detection in various human samples raises increasing concern on its safety. Currently, whether a low dose of BPF compromises cardiac function is still unknown. This study provides the first evidence that low-dose BPF can induce cardiac hypertrophy by using cardiomyocytes derived from human embryonic stem cells (hES). Non-cytotoxic BPF increased cytosolic Ca 2+ influx ([Ca2+ ]c), which was most remarkable at low dose (7 ng/ml) rather than at higher doses. Significant changes in the morphological parameters of mitochondria and significant decreases in ATP production were induced by 7 ng/ml BPF, representing a classic hypertrophic cardiomyocyte. After eliminating the direct effects on mitochondrial fission-related DRP1 by administration of the DRP1 inhibitor Mdivi-1, we examined the changes in [Ca 2+ ]c levels induced by BPF, which enhanced the calcineurin (Cn) activity and induced the abnormal mitochondrial fission via the CnAß-DRP1 signaling pathway. BPF triggered excessive Ca 2+ influx by disrupting the L-type Ca 2+channel in cardiomyocytes. The interaction between ERß and CnAß cooperatively involved in the BPF-induced Ca 2+ influx, which resulted in the abnormal mitochondrial fission and compromised the cardiac function. Our findings provide a feasible molecular mechanism for explaining low-dose BPF-induced cardiac hypertrophy in vitro, preliminarily suggesting that BPF may not be as safe as assumed in humans.


Assuntos
Células-Tronco Embrionárias Humanas , Dinâmica Mitocondrial , Compostos Benzidrílicos , Calcineurina/metabolismo , Calcineurina/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Dinaminas/metabolismo , Receptor beta de Estrogênio/metabolismo , Humanos , Miócitos Cardíacos , Fenóis , Transdução de Sinais
10.
Cell Biol Toxicol ; 38(3): 487-504, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34365571

RESUMO

Cardiomyocyte apoptosis is critical for the development of viral myocarditis (VMC), which is one of the leading causes of cardiac sudden death in young adults. Our previous studies have demonstrated that elevated calpain activity is involved in the pathogenesis of VMC. This study aimed to further explore the underlying mechanisms. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin were infected with coxsackievirus B3 (CVB3) to establish a VMC model. Apoptosis was detected with flow cytometry, TUNEL staining, and western blotting. Cardiac function was measured using echocardiography. Mitochondrial function was measured using ATP assays, JC-1, and MitoSOX. Mitochondrial morphology was observed using MitoTracker staining and transmission electron microscopy. Colocalization of dynamin-related protein 1 (Drp-1) in mitochondria was examined using immunofluorescence. Phosphorylation levels of Drp-1 at Ser637 site were determined using western blotting analysis. We found that CVB3 infection impaired mitochondrial function as evidenced by increased mitochondrial ROS production, decreased ATP production and mitochondrial membrane potential, induced myocardial apoptosis and damage, and decreased myocardial function. These effects of CVB3 infection were attenuated by inhibition of calpain both by PD150606 treatment and calpastatin overexpression. Furthermore, CVB3-induced mitochondrial dysfunction was associated with the accumulation of Drp-1 in the outer membrane of mitochondria and subsequent increase in mitochondrial fission. Mechanistically, calpain cleaved and activated calcineurin A, which dephosphorylated Drp-1 at Ser637 site and promoted its accumulation in the mitochondria, leading to mitochondrial fission and dysfunction. In summary, calpain inhibition attenuated CVB3-induced myocarditis by reducing mitochondrial fission, thereby inhibiting cardiomyocyte apoptosis. Calpain is activated by CVB3 infection. Activated calpain cleaves calcineurin A and converts it to active form which could dephosphorylate Drp-1 at Ser637 site. Then, the active Drp-1 translocates from the cytoplasm to mitochondria and triggers excessive mitochondrial fission. Eventually, the balance of mitochondrial dynamics is broken, and apoptosis occurs.


Assuntos
Infecções por Coxsackievirus , Miocardite , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Calcineurina/metabolismo , Calcineurina/farmacologia , Calpaína/metabolismo , Calpaína/farmacologia , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Camundongos , Dinâmica Mitocondrial , Miocardite/metabolismo , Miocardite/patologia , Miócitos Cardíacos , Ratos
11.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210081

RESUMO

Alterations in the expression of glutamate/aspartate transporter (GLAST) have been associated with several neuropathological conditions including Alzheimer's disease and epilepsy. However, the mechanisms by which GLAST expression is altered are poorly understood. Here we used a combination of pharmacological and genetic approaches coupled with quantitative PCR and Western blot to investigate the mechanism of the regulation of GLAST expression by a Ca2+/calmodulin-activated phosphatase calcineurin (CaN). We show that treatment of cultured hippocampal mouse and fetal human astrocytes with a CaN inhibitor FK506 resulted in a dynamic modulation of GLAST protein expression, being downregulated after 24-48 h, but upregulated after 7 days of continuous FK506 (200 nM) treatment. Protein synthesis, as assessed by puromycin incorporation in neo-synthesized polypeptides, was inhibited already after 1 h of FK506 treatment, while the use of a proteasome inhibitor MG132 (1 µM) shows that GLAST protein degradation was only suppressed after 7 days of FK506 treatment. In astrocytes with constitutive genetic ablation of CaN both protein synthesis and degradation were significantly inhibited. Taken together, our data suggest that, in cultured astrocytes, CaN controls GLAST expression at a posttranscriptional level through regulation of GLAST protein synthesis and degradation.


Assuntos
Astrócitos/metabolismo , Calcineurina/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica , Animais , Calcineurina/farmacologia , Inibidores de Calcineurina , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/metabolismo , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Biossíntese de Proteínas , Proteólise
12.
Mol Pharmacol ; 95(6): 652-660, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979812

RESUMO

Cloxyquin has been reported as a specific activator of TRESK [TWIK-related spinal cord K+ channel (also known as K2P18.1)] background potassium channel. In this study, we have synthetized chemically modified analogs of cloxyquin and tested their effects on TRESK and other K2P channels. The currents of murine K2P channels, expressed heterologously in Xenopus oocytes, were measured by two-electrode voltage clamp, whereas the native background K+ conductance of mouse dorsal root ganglion (DRG) neurons was examined by the whole-cell patch-clamp method. Some of the analogs retained the activator character of the parent compound, but, more interestingly, other derivatives inhibited mouse TRESK current. The inhibitor analogs (A2764 and A2793) exerted state-dependent effects. The degree of inhibition by 100 µM A2764 (77.8% ± 3.5%, n = 6) was larger in the activated state of TRESK (i.e., after calcineurin-dependent stimulation) than in the resting state of the channel (42.8% ± 11.5% inhibition, n = 7). The selectivity of the inhibitor compounds was tested on several K2P channels. A2793 inhibited TWIK-related acid-sensitive K+ channel (TASK)-1 (100 µM, 53.4% ± 13, 5%, n = 5), while A2764 was more selective for TRESK, it only moderately influenced TREK-1 and TWIK-related alkaline pH-activated K+ channel. The effect of A2764 was also examined on the background K+ currents of DRG neurons. A subpopulation of DRG neurons, prepared from wild-type animals, expressed background K+ currents sensitive to A2764, whereas the inhibitor did not affect the currents in the DRG neurons of TRESK-deficient mice. Accordingly, A2764 may prove to be useful for the identification of TRESK current in native cells, and for the investigation of the role of the channel in nociception and migraine. SIGNIFICANCE STATEMENT: TRESK background potassium channel is a potential pharmacological target in migraine and neuropathic pain. In this study, we have identified a selective inhibitor of TRESK, A2764. This compound can inhibit TRESK in native cells, leading to cell depolarization and increased excitability. This new inhibitor may be of use to probe the role of TRESK channel in migraine and nociception.


Assuntos
Cloroquinolinóis/síntese química , Gânglios Espinais/fisiologia , Canais de Potássio/metabolismo , Animais , Calcineurina/farmacologia , Cloroquinolinóis/química , Cloroquinolinóis/farmacologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Camundongos , Estrutura Molecular , Técnicas de Patch-Clamp , Xenopus laevis
13.
Artigo em Inglês | MEDLINE | ID: mdl-30181374

RESUMO

FK506 (tacrolimus) is an FDA-approved immunosuppressant indicated for the prevention of allograft rejections in patients undergoing organ transplants. In mammals, FK506 inhibits the calcineurin-nuclear factor of activated T cells (NFAT) pathway to prevent T-cell proliferation by forming a ternary complex with its binding protein, FKBP12, and calcineurin. FK506 also exerts antifungal activity by inhibiting calcineurin, which is essential for the virulence of human-pathogenic fungi. Nevertheless, FK506 cannot be used directly as an antifungal drug due to its immunosuppressive action. In this study, we analyzed the cytotoxicity, immunosuppressive activity, and antifungal activity of four FK506 analogs, 31-O-demethyl-FK506, 9-deoxo-FK506, 9-deoxo-31-O-demethyl-FK506, and 9-deoxo-prolyl-FK506, in comparison with that of FK506. The four FK506 analogs generally possessed lower cytotoxicity and immunosuppressive activity than FK506. The FK506 analogs, except for 9-deoxo-prolyl-FK506, had strong antifungal activity against Cryptococcus neoformans and Candida albicans, which are two major invasive pathogenic yeasts, due to the inhibition of the calcineurin pathway. Furthermore, the FK506 analogs, except for 9-deoxo-prolyl-FK506, had strong antifungal activity against the invasive filamentous fungus Aspergillus fumigatus Notably, 9-deoxo-31-O-demethyl-FK506 and 31-O-demethyl-FK506 exhibited robust synergistic antifungal activity with fluconazole, similar to FK506. Considering the antifungal efficacy, cytotoxicity, immunosuppressive activity, and synergistic effect with commercial antifungal drugs, we selected 9-deoxo-31-O-demethyl-FK506 for further evaluation of its in vivo antifungal efficacy in a murine model of systemic cryptococcosis. Although 9-deoxo-31-O-demethyl-FK506 alone was not sufficient to treat the cryptococcal infection, when it was used in combination with fluconazole, it significantly extended the survival of C. neoformans-infected mice, confirming the synergistic in vivo antifungal efficacy between these two agents.


Assuntos
Antifúngicos/farmacologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Animais , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Calcineurina/farmacologia , Inibidores de Calcineurina/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Células Cultivadas , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Feminino , Fluconazol/farmacologia , Imunossupressores/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana/métodos , Proteína 1A de Ligação a Tacrolimo/farmacologia
14.
Am J Transplant ; 17(11): 2829-2840, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28432716

RESUMO

ß Cell transcription factors such as forkhead box protein O1 (FoxO1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), pancreatic and duodenal homeobox 1, and neuronal differentiation 1, are dysfunctional in type 2 diabetes mellitus (T2DM). Posttransplant diabetes mellitus resembles T2DM and reflects interaction between pretransplant insulin resistance and immunosuppressants, mainly calcineurin inhibitors (CNIs). We evaluated the effect of tacrolimus (TAC), cyclosporine A (CsA), and metabolic stressors (glucose plus palmitate) on insulinoma ß cells in vitro and in pancreata of obese and lean Zucker rats. Cells were cultured for 5 days with 100 µM palmitate and 22 mM glucose; CsA (250 ng/mL) or TAC (15 ng/mL) were added in the last 48 h. Glucose plus palmitate increased nuclear FoxO1 and decreased nuclear MafA. TAC in addition to glucose plus palmitate magnified these changes in nuclear factors, whereas CsA did not. In addition to glucose plus palmitate, both drugs reduced insulin content, and TAC also affected insulin secretion. TAC withdrawal or conversion to CsA restored these changes. Similar results were observed in pancreata of obese animals on CNIs. TAC and CsA, in addition to glucose plus palmitate, induced comparable inhibition of calcineurin and nuclear factor of activated T cells (NFAT); therefore, TAC potentiates glucolipotoxicity in ß cells, possibly by sharing common pathways of ß cell dysfunction. TAC-induced ß cell dysfunction is potentially reversible. Inhibition of the calcineurin-NFAT pathway may contribute to the diabetogenic effect of CNIs but does not explain the stronger effect of TAC compared with CsA.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Imunossupressores/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Tacrolimo/farmacologia , Animais , Calcineurina/farmacologia , Ciclosporina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Zucker , Magreza/fisiopatologia
15.
J Physiol ; 594(10): 2647-59, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26939666

RESUMO

KEY POINTS: Increases in intracellular Zn(2+) concentrations are an early, necessary signal for the modulation of Kv2.1 K(+) channel localization and physiological function. Intracellular Zn(2+) -mediated Kv2.1 channel modulation is dependent on calcineurin, a Ca(2+) -activated phosphatase. We show that intracellular Zn(2+) induces a significant increase in ryanodine receptor-dependent cytosolic Ca(2+) transients, which leads to a calcineurin-dependent redistribution of Kv2.1 channels from pre-existing membrane clusters to diffuse localization. As such, the link between Zn(2+) and Ca(2+) signalling in this Kv2.1 modulatory pathway is established. We observe that a sublethal ischaemic preconditioning insult also leads to Kv2.1 redistribution in a ryanodine receptor-dependent fashion. We suggest that Zn(2+) may be an early and ubiquitous signalling molecule mediating Ca(2+) release from the cortical endoplasmic reticulum via ryanodine receptor activation. ABSTRACT: Sublethal injurious stimuli in neurons induce transient increases in free intracellular Zn(2+) that are associated with regulating adaptive responses to subsequent lethal injury, including alterations in the function and localization of the delayed-rectifier potassium channel, Kv2.1. However, the link between intracellular Zn(2+) signalling and the observed changes in Kv2.1 remain undefined. In the present study, utilizing exogenous Zn(2+) treatment, along with a selective Zn(2+) ionophore, we show that transient elevations in intracellular Zn(2+) concentrations are sufficient to induce calcineurin-dependent Kv2.1 channel dispersal in rat cortical neurons in vitro, which is accompanied by a relatively small but significant hyperpolarizing shift in the voltage-gated activation kinetics of the channel. Critically, using a molecularly encoded calcium sensor, we found that the calcineurin-dependent changes in Kv2.1 probably occur as a result of Zn(2+) -induced cytosolic Ca(2+) release via activation of neuronal ryanodine receptors. Finally, we couple this mechanism with an established model for in vitro ischaemic preconditioning and show that Kv2.1 channel modulation in this process is also ryanodine receptor-sensitive. Our results strongly suggest that intracellular Zn(2+) -initiated signalling may represent an early and possibly widespread component of Ca(2+) -dependent processes in neurons.


Assuntos
Calcineurina/farmacologia , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Cloretos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Potássio Shab/metabolismo , Compostos de Zinco/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Feminino , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Learn Mem ; 22(3): 159-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25691516

RESUMO

Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in the initial consolidation of fear learning. With this in mind, we set to study whether CaN could have different roles in distinct components of extinction. Systemic treatment with the CaN inhibitors cyclosporin A (CsA) or FK-506, as well as i.c.v. administration of CsA, blocked within-session, but not between-session extinction or initial learning of contextual fear conditioning. Similar effects were found in multiple-session extinction of contextual fear conditioning and in auditory fear conditioning, indicating that CaN is involved in different types of short-term extinction. Meanwhile, inhibition of protein synthesis by cycloheximide (CHX) treatment did not affect within-session extinction, but disrupted fear acquisition and slightly impaired between-session extinction. Our results point to a dissociation of within- and between-session extinction of fear conditioning, with the former being more dependent on CaN activity and the latter on protein synthesis. Moreover, the modulation of within-session extinction did not affect between-session extinction, suggesting that these components are at least partially independent.


Assuntos
Calcineurina/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Animais , Calcineurina/farmacologia , Inibidores de Calcineurina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Ciclosporina/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Tacrolimo/farmacologia
17.
J Neurosci ; 33(34): 13791-804, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966700

RESUMO

Major histocompatibility complex class I (MHCI) molecules negatively regulate cortical connections and are implicated in neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. However, the mechanisms that mediate these effects are unknown. Here, we report a novel MHCI signaling pathway that requires the myocyte enhancer factor 2 (MEF2) transcription factors. In young rat cortical neurons, MHCI regulates MEF2 in an activity-dependent manner and requires calcineurin-mediated activation of MEF2 to limit synapse density. Manipulating MEF2 alone alters synaptic strength and GluA1 content, but not synapse density, implicating activity-dependent MEF2 activation as critical for MHCI signaling. The MHCI-MEF2 pathway identified here also mediates the effects of a mouse model of maternal immune activation (MIA) on connectivity in offspring. MHCI and MEF2 levels are higher, and synapse density is lower, on neurons from MIA offspring. Most important, dysregulation of MHCI and MEF2 is required for the MIA-induced reduction in neural connectivity. These results identify a previously unknown MHCI-calcineurin-MEF2 signaling pathway that regulates the establishment of cortical connections and mediates synaptic defects caused by MIA, a risk factor for autism spectrum disorders and schizophrenia.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Fatores de Regulação Miogênica/metabolismo , Neurônios/citologia , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Animais Recém-Nascidos , Calcineurina/farmacologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/genética , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Fatores de Regulação Miogênica/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Lobo Occipital/citologia , Poli I-C/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/imunologia , Interferência de RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
18.
J Immunol ; 188(1): 238-47, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22116828

RESUMO

We showed previously that the calcineurin B subunit (CnB) plays an important role in activation of peritoneal macrophage, but the underlying mechanism remained unknown. To examine whether there is a CnB receptor on peritoneal macrophages, we performed the radioligand binding assay of receptors. The receptor saturation binding curve demonstrated high-affinity and specific binding; the maximum binding was 1090 fmol/10(5) cells, and the K(d) was 70.59 pM. Then, we used a CnB affinity resin to trap potential receptors from highly purified peritoneal macrophage membranes. Mass spectrometry analysis showed that the binding protein was mouse integrin αM. We next performed a competition binding experiment to confirm the binding of CnB to integrin αM. This showed that FITC-CnB bound specifically to peritoneal macrophages and that binding was blocked by the addition of integrin αM Ab. We observed that CnB could induce TRAIL gene expression in peritoneal macrophages in vitro and in vivo. Integrin αM Ab blocking, RNA interference, and ligand competition experiments demonstrated that CnB-induced TRAIL expression is dependent on integrin αM. Furthermore, the tumoricidal activity of CnB-activated peritoneal macrophages is partially dependent on TRAIL. In addition, CnB treatment significantly prolongs the survival of mice bearing H22 ascites tumors, which has a positive correlation with the induction level of TRAIL. These results reveal a novel function of the CnB in innate immunity and cancer surveillance. They also point to a new signaling pathway leading to induction of TRAIL and suggest a possible application of CnB in cancer therapy.


Assuntos
Antígeno CD11b/imunologia , Calcineurina/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Macrófagos Peritoneais/imunologia , Transdução de Sinais/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ligação Proteica/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/genética
19.
Br J Pharmacol ; 181(7): 1068-1090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37850255

RESUMO

BACKGROUND AND PURPOSE: Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH: Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS: The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS: BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.


Assuntos
Piroptose , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Catelicidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Calcineurina/farmacologia , Autofagia , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição
20.
Nat Prod Res ; 38(10): 1652-1661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37226502

RESUMO

An experimental study has been conducted to investigate the efficacy of geraniol (GNL) isolated from lemomgrass in protecting against cardiac toxicity induced by tilmicosin (TIL) in albino mice. Compared to TIL-treated mice, those supplemented with GNL had a thicker left ventricular wall and a smaller ventricular cavity. Studies of TIL animals treated with GNL showed that their cardiomyocytes had markedly changed in diameter and volume, along with a reduction in numerical density. After TIL induction, animals showed a significant increase in the protein expression of TGF-ß1, TNF-α, nuclear factor kappa B (NF-kB), by 81.81, 73.75 and 66.67%, respectively, and hypertrophy marker proteins ANP, BNP, and calcineurin with respective percentages of 40, 33.34 and 42.34%. Interestingly, GNL significantly decreased the TGF-ß1, TNF-α, NF-kB, ANP, BNP, and calcineurin levels by 60.94, 65.13, 52.37, 49.73, 44.18 and 36.84%, respectively. As observed from histopathology and Masson's trichrome staining, supplementation with GNL could rescue TIL-induced cardiac hypertrophy. According to these results, GNL may protect the heart by reducing hypertrophy in mice and modulating biomarkers of fibrosis and apoptosis.


Assuntos
Monoterpenos Acíclicos , Cymbopogon , Tilosina/análogos & derivados , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacologia , Estresse Oxidativo , Miócitos Cardíacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA