Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.455
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 33: 291-353, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25861976

RESUMO

Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Inata/fisiologia , Canais Iônicos/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Imunoterapia/métodos , Canais Iônicos/genética , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Terapia de Alvo Molecular , Mutação , Transdução de Sinais
2.
Cell ; 177(5): 1252-1261.e13, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31080062

RESUMO

Mitochondrial calcium uptake is crucial to the regulation of eukaryotic Ca2+ homeostasis and is mediated by the mitochondrial calcium uniporter (MCU). While MCU alone can transport Ca2+ in primitive eukaryotes, metazoans require an essential single membrane-spanning auxiliary component called EMRE to form functional channels; however, the molecular mechanism of EMRE regulation remains elusive. Here, we present the cryo-EM structure of the human MCU-EMRE complex, which defines the interactions between MCU and EMRE as well as pinpoints the juxtamembrane loop of MCU and extended linker of EMRE as the crucial elements in the EMRE-dependent gating mechanism among metazoan MCUs. The structure also features the dimerization of two MCU-EMRE complexes along an interface at the N-terminal domain (NTD) of human MCU that is a hotspot for post-translational modifications. Thus, the human MCU-EMRE complex, which constitutes the minimal channel components among metazoans, provides a framework for future mechanistic studies on MCU.


Assuntos
Canais de Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Complexos Multiproteicos/metabolismo , Multimerização Proteica/fisiologia , Canais de Cálcio/genética , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Domínios Proteicos , Estrutura Secundária de Proteína
3.
Cell ; 177(6): 1480-1494.e19, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056283

RESUMO

Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Motilidade dos Espermatozoides/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Fertilidade , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatozoides/metabolismo
4.
Cell ; 177(6): 1495-1506.e12, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150622

RESUMO

The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.


Assuntos
Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/ultraestrutura , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil) , Sequência de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Canais de Cálcio/ultraestrutura , Canais de Cálcio Tipo L/fisiologia , Microscopia Crioeletrônica , Diltiazem , Ligantes , Masculino , Modelos Moleculares , Nifedipino , Coelhos , Verapamil
5.
Annu Rev Immunol ; 28: 491-533, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307213

RESUMO

Ca(2+) entry into cells of the peripheral immune system occurs through highly Ca(2+)-selective channels known as CRAC (calcium release-activated calcium) channels. CRAC channels are a very well-characterized example of store-operated Ca(2+) channels, so designated because they open when the endoplasmic reticulum (ER) Ca(2+) store becomes depleted. Physiologically, Ca(2+) is released from the ER lumen into the cytoplasm when activated receptors couple to phospholipase C and trigger production of the second messenger inositol 1,4,5-trisphosphate (IP(3)). IP(3) binds to IP(3) receptors in the ER membrane and activates Ca(2+) release. The proteins STIM and ORAI were discovered through limited and genome-wide RNAi screens, respectively, performed in Drosophila cells and focused on identifying modulators of store-operated Ca(2+) entry. STIM1 and STIM2 sense the depletion of ER Ca(2+) stores, whereas ORAI1 is a pore subunit of the CRAC channel. In this review, we discuss selected aspects of Ca(2+) signaling in cells of the immune system, focusing on the roles of STIM and ORAI proteins in store-operated Ca(2+) entry.


Assuntos
Canais de Cálcio/imunologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Linfócitos/imunologia , Linfócitos/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Animais , Canais de Cálcio/química , Humanos , Linfócitos/química , Proteínas de Membrana/química , Transporte Proteico
6.
Cell ; 170(1): 185-198.e16, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28648659

RESUMO

Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Assuntos
Células Quimiorreceptoras/metabolismo , Células Enterocromafins/metabolismo , Trato Gastrointestinal/citologia , Vias Neurais , Sequência de Aminoácidos , Animais , Sequência de Bases , Canais de Cálcio/metabolismo , Catecolaminas/metabolismo , Perfilação da Expressão Gênica , Humanos , Síndrome do Intestino Irritável/patologia , Camundongos , Fibras Nervosas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Odorantes/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/metabolismo
7.
Annu Rev Biochem ; 85: 161-92, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145841

RESUMO

In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Regulação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons , Cinética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais , Modelos Moleculares , Trocador de Sódio e Cálcio/genética , Termodinâmica
8.
Cell ; 166(3): 716-728, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27426949

RESUMO

Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders.


Assuntos
Neurônios Colinérgicos/metabolismo , Medo/fisiologia , Habenula/fisiologia , Memória/fisiologia , Receptores de GABA-B/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Neurotransmissores/metabolismo , Transmissão Sináptica
9.
Cell ; 165(6): 1454-1466, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212239

RESUMO

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.


Assuntos
Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/genética , Células COS , Cálcio/metabolismo , Canais de Cálcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Deficiência Intelectual/genética , Membranas Intracelulares/metabolismo , Camundongos , Camundongos Knockout , Osteogênese/genética , Alinhamento de Sequência
10.
Nat Immunol ; 19(8): 871-884, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988090

RESUMO

B cells are activated by two temporally distinct signals, the first provided by the binding of antigen to the B cell antigen receptor (BCR), and the second provided by helper T cells. Here we found that B cells responded to antigen by rapidly increasing their metabolic activity, including both oxidative phosphorylation and glycolysis. In the absence of a second signal, B cells progressively lost mitochondrial function and glycolytic capacity, which led to apoptosis. Mitochondrial dysfunction was a result of the gradual accumulation of intracellular calcium through calcium response-activated calcium channels that, for approximately 9 h after the binding of B cell antigens, was preventable by either helper T cells or signaling via the receptor TLR9. Thus, BCR signaling seems to activate a metabolic program that imposes a limited time frame during which B cells either receive a second signal and survive or are eliminated.


Assuntos
Linfócitos B/fisiologia , Mitocôndrias/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Citocinas/metabolismo , Glicólise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células NIH 3T3 , Fosforilação Oxidativa , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Receptor Toll-Like 9/genética
11.
Nature ; 628(8009): 910-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570680

RESUMO

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Ativação do Canal Iônico , Mecanotransdução Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Lipídeos/química , Lipossomos/metabolismo , Lipossomos/química , Modelos Moleculares , Nanoestruturas/química
12.
Nature ; 629(8014): 1118-1125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778102

RESUMO

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Germinação , Concentração Osmolar , Pólen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinação/genética , Mutação , Pólen/genética , Pólen/metabolismo , Água/metabolismo , Células HEK293 , Humanos , Desidratação
13.
Physiol Rev ; 102(2): 893-992, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698550

RESUMO

The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Humanos
14.
Cell ; 159(3): 608-22, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417111

RESUMO

The Ca(2+)-free form of calmodulin (apoCaM) often appears inert, modulating target molecules only upon conversion to its Ca(2+)-bound form. This schema has appeared to govern voltage-gated Ca(2+) channels, where apoCaM has been considered a dormant Ca(2+) sensor, associated with channels but awaiting the binding of Ca(2+) ions before inhibiting channel opening to provide vital feedback inhibition. Using single-molecule measurements of channels and chemical dimerization to elevate apoCaM, we find that apoCaM binding on its own markedly upregulates opening, rivaling the strongest forms of modulation. Upon Ca(2+) binding to this CaM, inhibition may simply reverse the initial upregulation. As RNA-edited and -spliced channel variants show different affinities for apoCaM, the apoCaM-dependent control mechanisms may underlie the functional diversity of these variants and explain an elongation of neuronal action potentials by apoCaM. More broadly, voltage-gated Na channels adopt this same modulatory principle. ApoCaM thus imparts potent and pervasive ion-channel regulation. PAPERCLIP:


Assuntos
Calmodulina/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Ratos , Canais de Sódio/química , Canais de Sódio/metabolismo
15.
Cell ; 157(4): 808-22, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813608

RESUMO

Spermatozoa must leave one organism, navigate long distances, and deliver their paternal DNA into a mature egg. For successful navigation and delivery, a sperm-specific calcium channel is activated in the mammalian flagellum. The genes encoding this channel (CatSpers) appear first in ancient uniflagellates, suggesting that sperm use adaptive strategies developed long ago for single-cell navigation. Here, using genetics, super-resolution fluorescence microscopy, and phosphoproteomics, we investigate the CatSper-dependent mechanisms underlying this flagellar switch. We find that the CatSper channel is required for four linear calcium domains that organize signaling proteins along the flagella. This unique structure focuses tyrosine phosphorylation in time and space as sperm acquire the capacity to fertilize. In heterogeneous sperm populations, we find unique molecular phenotypes, but only sperm with intact CatSper domains that organize time-dependent and spatially specific protein tyrosine phosphorylation successfully migrate. These findings illuminate flagellar adaptation, signal transduction cascade organization, and fertility.


Assuntos
Sinalização do Cálcio , Motilidade dos Espermatozoides , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura , Animais , Axonema/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Feminino , Fertilização , Masculino , Camundongos , Microscopia de Fluorescência , Fosforilação , Cauda do Espermatozoide/química , Tirosina/metabolismo
16.
Cell ; 159(2): 281-94, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303525

RESUMO

Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, its phosphorylation at Thr287 by ßCaMKII protects the Ca(2+)/CaM signal, and CaN triggers its nuclear translocation. Both ßCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, whereas γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca(2+)/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves long-standing puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, ßCaMKII, and CaN in multiple neuropsychiatric disorders.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Núcleo Celular/metabolismo , Neurônios/metabolismo , Fosforilação , Ratos Sprague-Dawley , Transcrição Gênica
17.
Cell ; 157(7): 1657-70, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949975

RESUMO

Voltage-gated Na and Ca2+ channels comprise distinct ion channel superfamilies, yet the carboxy tails of these channels exhibit high homology, hinting at a long-shared and purposeful module. For different Ca2+ channels, carboxyl-tail interactions with calmodulin do elaborate robust and similar forms of Ca2+ regulation. However, Na channels have only shown subtler Ca2+ modulation that differs among reports, challenging attempts at unified understanding. Here, by rapid Ca2+ photorelease onto Na channels, we reset this view of Na channel regulation. For cardiac-muscle channels (NaV1.5), reported effects from which most mechanistic proposals derive, we observe no Ca2+ modulation. Conversely, for skeletal-muscle channels (NaV1.4), we uncover fast Ca2+ regulation eerily similar to that of Ca2+ channels. Channelopathic myotonia mutations halve NaV1.4 Ca2+ regulation, and transplanting the NaV1.4 carboxy tail onto Ca2+ channels recapitulates Ca2+ regulation. Thus, we argue for the persistence and physiological relevance of an ancient Ca2+ regulatory module across Na and Ca2+ channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Animais , Canais de Cálcio/genética , Calmodulina/metabolismo , Cobaias , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Células Musculares/metabolismo , Mioblastos/metabolismo , Filogenia , Ratos , Alinhamento de Sequência , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
18.
Mol Cell ; 81(1): 13-24.e7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33202250

RESUMO

Tethering of synaptic vesicles (SVs) to the active zone determines synaptic strength, although the molecular basis governing SV tethering is elusive. Here, we discover that small unilamellar vesicles (SUVs) and SVs from rat brains coat on the surface of condensed liquid droplets formed by active zone proteins RIM, RIM-BP, and ELKS via phase separation. Remarkably, SUV-coated RIM/RIM-BP condensates are encapsulated by synapsin/SUV condensates, forming two distinct SUV pools reminiscent of the reserve and tethered SV pools that exist in presynaptic boutons. The SUV-coated RIM/RIM-BP condensates can further cluster Ca2+ channels anchored on membranes. Thus, we reconstitute a presynaptic bouton-like structure mimicking the SV-tethered active zone with its one side attached to the presynaptic membrane and the other side connected to the synapsin-clustered SV condensates. The distinct interaction modes between membraneless protein condensates and membrane-based organelles revealed here have general implications in cellular processes, including vesicular formation and trafficking, organelle biogenesis, and autophagy.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Canais de Cálcio/genética , Humanos , Camundongos , Ratos , Sinapsinas/genética , Vesículas Sinápticas/genética
19.
Annu Rev Biochem ; 82: 607-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23331239

RESUMO

Transmitter release is a fast Ca(2+)-dependent process triggered in response to membrane depolarization. It involves two major calcium-binding proteins, the voltage-gated calcium channel (VGCC) and the vesicular protein synaptotagmin (syt1). Ca(2+) binding triggers transmitter release with a time response of conformational changes that are too fast to be accounted for by Ca(2+) binding to syt1. In contrast, conformation-triggered release, which engages Ca(2+) binding to VGCC, better accounts for the fast rate of the release process. Here, we summarize findings obtained from heterologous expression systems, neuroendocrine cells, and reconstituted systems, which reveal the molecular mechanism by which Ca(2+) binding to VGCC triggers exocytosis prior to Ca(2+) entry into the cell. This review highlights the molecular aspects of an intramembrane signaling mechanism in which a signal is propagated from the channel transmembrane (TM) domain to the TM domain of syntaxin 1A to trigger transmitter release. It discusses fundamental problems of triggering transmitter release by syt1 and suggests a classification of docked vesicles that might explain synchronous transmitter release, spontaneous release, and facilitation of transmitter release.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Exocitose/fisiologia , Células Neuroendócrinas/metabolismo , Transmissão Sináptica/fisiologia , Sinaptotagminas/metabolismo , Animais , Canais de Cálcio/fisiologia , Humanos , Modelos Biológicos , Células Neuroendócrinas/fisiologia
20.
Trends Biochem Sci ; 49(8): 658-659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816278

RESUMO

Calcium is a crucial second messenger in the cell that is stored in organelles including lysosomes. Proteins that facilitate calcium entry to the lysosome were unknown. A recent report by Zajac et al. identified TMEM165 as a proton-activated calcium importer on the lysosome, thus discovering a key player in subcellular calcium homeostasis.


Assuntos
Cálcio , Complexo de Golgi , Lisossomos , Lisossomos/metabolismo , Humanos , Complexo de Golgi/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA