Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.904
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(13): 2292-2308.e20, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750034

RESUMO

Lysosomes require an acidic lumen between pH 4.5 and 5.0 for effective digestion of macromolecules. This pH optimum is maintained by proton influx produced by the V-ATPase and efflux through an unidentified "H+ leak" pathway. Here we show that TMEM175, a genetic risk factor for Parkinson's disease (PD), mediates the lysosomal H+ leak by acting as a proton-activated, proton-selective channel on the lysosomal membrane (LyPAP). Acidification beyond the normal range potently activated LyPAP to terminate further acidification of lysosomes. An endogenous polyunsaturated fatty acid and synthetic agonists also activated TMEM175 to trigger lysosomal proton release. TMEM175 deficiency caused lysosomal over-acidification, impaired proteolytic activity, and facilitated α-synuclein aggregation in vivo. Mutational and pH normalization analyses indicated that the channel's H+ conductance is essential for normal lysosome function. Thus, modulation of LyPAP by cellular cues may dynamically tune the pH optima of endosomes and lysosomes to regulate lysosomal degradation and PD pathology.


Assuntos
Doença de Parkinson , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Canais de Potássio/metabolismo , Prótons
2.
Cell ; 175(5): 1213-1227.e18, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318147

RESUMO

Neurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic. Here, we show in Drosophila clock neurons that distinct temporal spike patterns, dissociated from changes in firing rate, encode time-dependent arousal and regulate sleep. From a large-scale genetic screen, we identify the molecular pathways mediating the circadian-dependent changes in ionic flux and spike morphology that rhythmically modulate spike timing. Remarkably, the daytime spiking pattern alone is sufficient to drive plasticity in downstream arousal neurons, leading to increased firing of these cells. These findings demonstrate a causal role for temporal coding in behavior and define a form of synaptic plasticity triggered solely by temporal spike patterns.


Assuntos
Plasticidade Neuronal , Sono/fisiologia , Potenciais de Ação , Animais , Relógios Circadianos/fisiologia , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Optogenética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transmissão Sináptica
3.
Cell ; 168(3): 390-399.e11, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111072

RESUMO

The stable structural conformations that occur along the complete reaction coordinate for ion channel opening have never been observed. In this study, we describe the equilibrium ensemble of structures of Slo2.2, a neuronal Na+-activated K+ channel, as a function of the Na+ concentration. We find that Slo2.2 exists in multiple closed conformations whose relative occupancies are independent of Na+ concentration. An open conformation emerges from an ensemble of closed conformations in a highly Na+-dependent manner, without evidence of Na+-dependent intermediates. In other words, channel opening is a highly concerted, switch-like process. The midpoint of the structural titration matches that of the functional titration. A maximum open conformation probability approaching 1.0 and maximum functional open probability approaching 0.7 imply that, within the class of open channels, there is a subclass that is not permeable to ions.


Assuntos
Proteínas Aviárias/química , Galinhas/metabolismo , Proteínas do Tecido Nervoso/química , Canais de Potássio/química , Animais , Proteínas Aviárias/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Conformação Proteica , Sódio/química
4.
Cell ; 168(1-2): 111-120.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086084

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the control of rhythmic activity in cardiac and neuronal pacemaker cells. In HCN, the polarity of voltage dependence is uniquely reversed. Intracellular cyclic adenosine monophosphate (cAMP) levels tune the voltage response, enabling sympathetic nerve stimulation to increase the heart rate. We present cryo-electron microscopy structures of the human HCN channel in the absence and presence of cAMP at 3.5 Å resolution. HCN channels contain a K+ channel selectivity filter-forming sequence from which the amino acids create a unique structure that explains Na+ and K+ permeability. The voltage sensor adopts a depolarized conformation, and the pore is closed. An S4 helix of unprecedented length extends into the cytoplasm, contacts the C-linker, and twists the inner helical gate shut. cAMP binding rotates cytoplasmic domains to favor opening of the inner helical gate. These structures advance understanding of ion selectivity, reversed polarity gating, and cAMP regulation in HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais de Potássio/química , Sequência de Aminoácidos , Microscopia Crioeletrônica/métodos , AMP Cíclico/química , AMP Cíclico/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Modelos Moleculares , Canais de Potássio/metabolismo , Alinhamento de Sequência
5.
Mol Cell ; 83(14): 2524-2539.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37390818

RESUMO

Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.


Assuntos
Doença de Parkinson , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Canais de Potássio/metabolismo
6.
Cell ; 162(5): 1101-12, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26317472

RESUMO

Potassium is the most abundant ion to face both plasma and organelle membranes. Extensive research over the past seven decades has characterized how K(+) permeates the plasma membrane to control fundamental processes such as secretion, neuronal communication, and heartbeat. However, how K(+) permeates organelles such as lysosomes and endosomes is unknown. Here, we directly recorded organelle K(+) conductance and discovered a major K(+)-selective channel KEL on endosomes and lysosomes. KEL is formed by TMEM175, a protein with unknown function. Unlike any of the ∼80 plasma membrane K(+) channels, TMEM175 has two repeats of 6-transmembrane-spanning segments and has no GYG K(+) channel sequence signature-containing, pore-forming P loop. Lysosomes lacking TMEM175 exhibit no K(+) conductance, have a markedly depolarized ΔΨ and little sensitivity to changes in [K(+)], and have compromised luminal pH stability and abnormal fusion with autophagosomes during autophagy. Thus, TMEM175 comprises a K(+) channel that underlies the molecular mechanism of lysosomal K(+) permeability.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Fagossomos/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Alinhamento de Sequência
7.
Nature ; 632(8024): 451-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085604

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.


Assuntos
Epilepsia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Mutação , Canais de Potássio , Propofol , Humanos , Sítios de Ligação , Microscopia Crioeletrônica , Eletrofisiologia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Células HEK293 , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Movimento/efeitos dos fármacos , Fenilalanina/genética , Fenilalanina/metabolismo , Polimorfismo Genético , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio/ultraestrutura , Propofol/farmacologia , Propofol/química
8.
Annu Rev Biochem ; 83: 291-315, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905784

RESUMO

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo-electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sítio Alostérico , Animais , Proteínas de Bactérias/química , Domínio Catalítico , Exossomos , Proteína HMGN2/química , Proteínas de Choque Térmico/química , Humanos , Concentração de Íons de Hidrogênio , Substâncias Macromoleculares/química , Nucleossomos/química , Canais de Potássio/química , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Proteínas/química
9.
Cell ; 158(6): 1335-1347, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25201528

RESUMO

The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Dendritos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais , Quinases da Família src/metabolismo
10.
Cell ; 157(7): 1565-76, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949969

RESUMO

Mycobacterium ulcerans, the etiological agent of Buruli ulcer, causes extensive skin lesions, which despite their severity are not accompanied by pain. It was previously thought that this remarkable analgesia is ensured by direct nerve cell destruction. We demonstrate here that M. ulcerans-induced hypoesthesia is instead achieved through a specific neurological pathway triggered by the secreted mycobacterial polyketide mycolactone. We decipher this pathway at the molecular level, showing that mycolactone elicits signaling through type 2 angiotensin II receptors (AT2Rs), leading to potassium-dependent hyperpolarization of neurons. We further validate the physiological relevance of this mechanism with in vivo studies of pain sensitivity in mice infected with M. ulcerans, following the disruption of the identified pathway. Our findings shed new light on molecular mechanisms evolved by natural systems for the induction of very effective analgesia, opening up the prospect of new families of analgesics derived from such systems.


Assuntos
Angiotensinas/metabolismo , Úlcera de Buruli/patologia , Macrolídeos/isolamento & purificação , Mycobacterium ulcerans , Analgésicos/isolamento & purificação , Animais , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Modelos Animais de Doenças , Edema/microbiologia , Humanos , Hipestesia/induzido quimicamente , Macrolídeos/química , Macrolídeos/metabolismo , Camundongos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166608

RESUMO

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Íons/metabolismo , Proteínas Musculares/metabolismo , Canais de Potássio/metabolismo , Linhagem Celular , Microscopia Crioeletrônica/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
12.
Nature ; 601(7893): 366-373, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046606

RESUMO

Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1-4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7-9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)-namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)-results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.


Assuntos
Proteínas de Ligação ao Cálcio , Células Dendríticas , Inflamassomos , Nanopartículas Metálicas , Receptores Acoplados a Proteínas G , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Dendríticas/imunologia , Ouro , Vírus da Influenza A Subtipo H9N2 , Mecanotransdução Celular , Nanopartículas Metálicas/química , Camundongos , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
13.
Immunity ; 49(1): 56-65.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958799

RESUMO

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.


Assuntos
Inflamassomos/metabolismo , Inflamação/fisiopatologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/deficiência , Caspase 1/metabolismo , Linhagem Celular , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Quinina/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
14.
PLoS Biol ; 22(7): e3002716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008526

RESUMO

Heterologous sensitization of adenylyl cyclase (AC) results in elevated cAMP signaling transduction that contributes to drug dependence. Inhibiting cullin3-RING ligases by blocking the neddylation of cullin3 abolishes heterologous sensitization, however, the modulating mechanism remains uncharted. Here, we report an essential role of the potassium channel tetramerization domain (KCTD) protein 2, 5, and 17, especially the dominant isoform KCTD5 in regulating heterologous sensitization of AC1 and morphine dependence via working with cullin3 and the cullin-associated and neddylation-dissociated 1 (CAND1) protein. In cellular models, we observed enhanced association of KCTD5 with Gß and cullin3, along with elevated dissociation of Gß from AC1 as well as of CAND1 from cullin3 in heterologous sensitization of AC1. Given binding of CAND1 inhibits the neddylation of cullin3, we further elucidated that the enhanced interaction of KCTD5 with both Gß and cullin3 promoted the dissociation of CAND1 from cullin3, attenuated the inhibitory effect of CAND1 on cullin3 neddylation, ultimately resulted in heterologous sensitization of AC1. The paraventricular thalamic nucleus (PVT) plays an important role in mediating morphine dependence. Through pharmacological and biochemical approaches, we then demonstrated that KCTD5/cullin3 regulates morphine dependence via modulating heterologous sensitization of AC, likely AC1 in PVT in mice. In summary, the present study revealed the underlying mechanism of heterologous sensitization of AC1 mediated by cullin3 and discovered the role of KCTD proteins in regulating morphine dependence in mice.


Assuntos
Adenilil Ciclases , Proteínas Culina , Dependência de Morfina , Animais , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Proteínas Culina/metabolismo , Camundongos , Dependência de Morfina/metabolismo , Células HEK293 , Humanos , Canais de Potássio/metabolismo , Canais de Potássio/genética , Camundongos Endogâmicos C57BL , Masculino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Morfina/farmacologia , Camundongos Knockout , Transdução de Sinais , AMP Cíclico/metabolismo
15.
Nature ; 591(7850): 431-437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33505021

RESUMO

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Biocatálise , Neurônios Dopaminérgicos/metabolismo , Feminino , Mutação com Ganho de Função , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Knockout , Destreza Motora , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Doença de Parkinson/genética , Canais de Potássio/química , Canais de Potássio/deficiência , Canais de Potássio/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
16.
Nature ; 599(7883): 158-164, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34552243

RESUMO

Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart1,2. Native Kv4 tetrameric channels form macromolecular ternary complexes with two auxiliary ß-subunits-intracellular Kv channel-interacting proteins (KChIPs) and transmembrane dipeptidyl peptidase-related proteins (DPPs)-to evoke rapidly activating and inactivating A-type currents, which prevent the backpropagation of action potentials1-5. However, the modulatory mechanisms of Kv4 channel complexes remain largely unknown. Here we report cryo-electron microscopy structures of the Kv4.2-DPP6S-KChIP1 dodecamer complex, the Kv4.2-KChIP1 and Kv4.2-DPP6S octamer complexes, and Kv4.2 alone. The structure of the Kv4.2-KChIP1 complex reveals that the intracellular N terminus of Kv4.2 interacts with its C terminus that extends from the S6 gating helix of the neighbouring Kv4.2 subunit. KChIP1 captures both the N and the C terminus of Kv4.2. In consequence, KChIP1 would prevent N-type inactivation and stabilize the S6 conformation to modulate gating of the S6 helices within the tetramer. By contrast, unlike the reported auxiliary subunits of voltage-gated channel complexes, DPP6S interacts with the S1 and S2 helices of the Kv4.2 voltage-sensing domain, which suggests that DPP6S stabilizes the conformation of the S1-S2 helices. DPP6S may therefore accelerate the voltage-dependent movement of the S4 helices. KChIP1 and DPP6S do not directly interact with each other in the Kv4.2-KChIP1-DPP6S ternary complex. Thus, our data suggest that two distinct modes of modulation contribute in an additive manner to evoke A-type currents from the native Kv4 macromolecular complex.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Canais de Potássio Shal/química , Canais de Potássio Shal/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Feminino , Humanos , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/metabolismo , Modelos Moleculares , Complexos Multiproteicos/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Ligação Proteica , Canais de Potássio Shal/genética , Xenopus laevis
17.
Proc Natl Acad Sci U S A ; 121(18): e2318666121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652747

RESUMO

In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfatos de Dinucleosídeos/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/genética
18.
Proc Natl Acad Sci U S A ; 121(27): e2402259121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917012

RESUMO

HCN1-4 channels are the molecular determinants of the If/Ih current that crucially regulates cardiac and neuronal cell excitability. HCN dysfunctions lead to sinoatrial block (HCN4), epilepsy (HCN1), and chronic pain (HCN2), widespread medical conditions awaiting subtype-specific treatments. Here, we address the problem by solving the cryo-EM structure of HCN4 in complex with ivabradine, to date the only HCN-specific drug on the market. Our data show ivabradine bound inside the open pore at 3 Å resolution. The structure unambiguously proves that Y507 and I511 on S6 are the molecular determinants of ivabradine binding to the inner cavity, while F510, pointing outside the pore, indirectly contributes to the block by controlling Y507. Cysteine 479, unique to the HCN selectivity filter (SF), accelerates the kinetics of block. Molecular dynamics simulations further reveal that ivabradine blocks the permeating ion inside the SF by electrostatic repulsion, a mechanism previously proposed for quaternary ammonium ions.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ivabradina , Simulação de Dinâmica Molecular , Ivabradina/química , Ivabradina/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Humanos , Microscopia Crioeletrônica , Animais , Canais de Potássio/química , Canais de Potássio/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(31): e2310120121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058579

RESUMO

The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.


Assuntos
Anquirinas , Segmento Inicial do Axônio , Hipocampo , Células Piramidais , Animais , Anquirinas/metabolismo , Ratos , Células Piramidais/metabolismo , Segmento Inicial do Axônio/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Axônios/metabolismo , Motivos de Aminoácidos , Canais de Potássio/metabolismo , Ligação Proteica
20.
Annu Rev Biochem ; 80: 211-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21548783

RESUMO

Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Integrinas , Canais de Potássio , Proteínas da Matriz Viral , Integrinas/química , Integrinas/metabolismo , Íons/química , Íons/metabolismo , Ligantes , Modelos Moleculares , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Transdução de Sinais/fisiologia , Termodinâmica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA