Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(4): 771-782.e11, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056341

RESUMO

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Assuntos
Carbono-Carbono Liases/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/genética , Técnicas de Inativação de Genes , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Moleculares
2.
Physiol Plant ; 176(3): e14371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837414

RESUMO

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulação da Expressão Gênica de Plantas , Liases , Raízes de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/biossíntese , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Liases/genética , Liases/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Regiões Promotoras Genéticas/genética , Carbono-Carbono Liases/metabolismo , Carbono-Carbono Liases/genética , Ativação Transcricional/genética
3.
Environ Microbiol ; 24(8): 3612-3624, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35191581

RESUMO

The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt-stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt-stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt-stressed plants, bacteria-inoculated plants under normal and salt stress conditions respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. However, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt-induced apoptosis and sustaining growth and development.


Assuntos
Oryza , Antioxidantes/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Etilenos/metabolismo , Oryza/microbiologia , Proteômica , Estresse Salino , Estresse Fisiológico
4.
Plant Cell ; 31(9): 2223-2240, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320482

RESUMO

Cuticular waxes, which cover the aboveground parts of land plants, are essential for plant survival in terrestrial environments. However, little is known about the regulatory mechanisms underlying cuticular wax biosynthesis in response to changes in ambient humidity. Here, we report that the Arabidopsis (Arabidopsis thaliana) Kelch repeat F-box protein SMALL AND GLOSSY LEAVES1 (SAGL1) mediates proteasome-dependent degradation of ECERIFERUM3 (CER3), a biosynthetic enzyme involved in the production of very long chain alkanes (the major components of wax), thereby negatively regulating cuticular wax biosynthesis. Disruption of SAGL1 led to severe growth retardation, enhanced drought tolerance, and increased wax accumulation in stems, leaves, and roots. Cytoplasmic SAGL1 physically interacts with CER3 and targets it for degradation. ß­glucuronidase (GUS) expression was observed in the roots of pSAGL1:GUS plants but was barely detected in aerial organs. High humidity-induced GUS activity and SAGL1 transcript levels were reduced in response to abscisic acid treatment and water deficit. SAGL1 levels increase under high humidity, and the stability of this protein is regulated by the 26S proteasome. These findings indicate that the SAGL1-CER3 module negatively regulates cuticular wax biosynthesis in Arabidopsis in response to changes to humidity, and they highlight the importance of permeable cuticle formation in terrestrial plants under high humidity conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono-Carbono Liases/metabolismo , Proteínas F-Box/metabolismo , Umidade , Ceras/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases/genética , Parede Celular/ultraestrutura , Clonagem Molecular , Secas , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/metabolismo , Mutação , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Sais/metabolismo , Plântula , Nicotiana
5.
Antonie Van Leeuwenhoek ; 115(9): 1165-1176, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35867173

RESUMO

It has been previously shown that a number of plant associated methylotrophic bacteria contain an enzyme aminocyclopropane carboxylate (ACC) deaminase (AcdS) hydrolyzing ACC, the immediate precursor of ethylene in plants. The genome of the epiphytic methylotroph Methylobacterium radiotolerans JCM2831 contains an open reading frame encoding a protein homologous to transcriptional regulatory protein AcdR of the Lrp (leucine-responsive regulatory protein) family. The acdR gene of M. radiotolerans was heterologously expressed in Escherichia coli and purified. The results of gel retardation experiments have shown that AcdR specifically binds the DNA fragment containing the promoter-operator region of the acdS gene. ACC decreased electrophoretic mobility of the AcdR-DNA complex whereas leucine had no effect on the complex mobility. The mutant strains of M. radiotolerans obtained by insertion of a tetracycline cassette in the acdS or acdR gene lost the ACC-deaminase activity but the strains with complementation of the mutation recovered this function. The acdS- mutant but not acdR- strain expressed the xylE reporter gene under the control of acdS promoter region thus resulting in a catechol 2,3-dioxygenase activity. This suggested that AcdR in vivo functions as activator of transcription of the acdS gene. The results obtained in this study showed that in phytosymbiotic methylotroph Methylobacterium radiotolerans AcdR mediates activation of the acdS gene transcription in the presence of an inducer ACC or 2-aminoisobutyrate and the excess of the regulatory protein assists in transcription initiation even in the absence of the inducer. The model of regulation of acdS transcription in M. radiotolerans was proposed.


Assuntos
Carbono-Carbono Liases , Methylobacterium , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Methylobacterium/genética , Methylobacterium/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
6.
Lett Appl Microbiol ; 74(4): 519-535, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34919753

RESUMO

Plant growth-promoting bacteria (PGPB) expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity are widely acknowledged to have a role in mitigation of abiotic stress caused by extreme environmental conditions. Consequently, several studies have focused on the isolation of ACC deaminase positive PGPBs. However, the application of such strains in drought-prone arid regions has remained grossly under-exploited. In order to be used in arid agroecosystems, PGPBs need to have the dual capability: to express ACC deaminase and to have the ability to tolerate increased temperature and salt concentration. Conspicuously, to date, very few studies have reported about isolation and characterization of PGPBs with this kind of dual capability. Here we report the isolation of bacterial strains from rhizosphere(s) of Cyamopsis tetragonoloba, a commercial crop from arid regions of Rajasthan, India, and their characterization for ACC deaminase activity and thermohalotolerance. Isolates found positive for desired traits were subsequently assessed for plant growth promotion under simulated drought conditions. Our finding showed that although the bacterial diversity within the rhizosphere of C. tetragonoloba grown in the arid region is quite poor, multiple isolates are ACC deaminase positive. Four isolates were found to be ACC deaminase positive, thermohalotolerant, and successfully enhanced drought tolerance. These isolates were identified as strains belonging to genera Pseudomonas, Enterobacter, and Stenotrophomonas based on 16S rRNA sequence homology.


Assuntos
Cyamopsis , Rizosfera , Carbono-Carbono Liases/genética , Cyamopsis/genética , Secas , Enterobacter/genética , Índia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Microbiologia do Solo
7.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055171

RESUMO

Peroxisomal fatty acid α-oxidation is an essential pathway for the degradation of ß-carbon methylated fatty acids such as phytanic acid. One enzyme in this pathway is 2-hydroxyacyl CoA lyase (HACL1), which is responsible for the cleavage of 2-hydroxyphytanoyl-CoA into pristanal and formyl-CoA. Hacl1 deficient mice do not present with a severe phenotype, unlike mice deficient in other α-oxidation enzymes such as phytanoyl-CoA hydroxylase deficiency (Refsum disease) in which neuropathy and ataxia are present. Tissues from wild-type and Hacl1-/- mice fed a high phytol diet were obtained for proteomic and lipidomic analysis. There was no phenotype observed in these mice. Liver, brain, and kidney tissues underwent trypsin digestion for untargeted proteomic liquid chromatography-mass spectrometry analysis, while liver tissues also underwent fatty acid hydrolysis, extraction, and derivatisation for fatty acid gas chromatography-mass spectrometry analysis. The liver fatty acid profile demonstrated an accumulation of phytanic and 2-hydroxyphytanic acid in the Hacl1-/- liver and significant decrease in heptadecanoic acid. The liver proteome showed a significant decrease in the abundance of Hacl1 and a significant increase in the abundance of proteins involved in PPAR signalling, peroxisome proliferation, and omega oxidation, particularly Cyp4a10 and Cyp4a14. In addition, the pathway associated with arachidonic acid metabolism was affected; Cyp2c55 was upregulated and Cyp4f14 and Cyp2b9 were downregulated. The kidney proteome revealed fewer significantly upregulated peroxisomal proteins and the brain proteome was not significantly different in Hacl1-/- mice. This study demonstrates the powerful insight brought by proteomic and metabolomic profiling of Hacl1-/- mice in better understanding disease mechanism in fatty acid α-oxidation disorders.


Assuntos
Carbono-Carbono Liases/genética , Lipidômica/métodos , Peroxissomos/metabolismo , Fitol/administração & dosagem , Proteômica/métodos , Animais , Encéfalo/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 4 do Citocromo P450/metabolismo , Ácidos Graxos/metabolismo , Feminino , Técnicas de Inativação de Genes , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Oxirredução , Ácido Fitânico/análogos & derivados , Ácido Fitânico/metabolismo , Fitol/farmacologia
8.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34845903

RESUMO

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/metabolismo , Isomerases de Aminoácido/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Amycolatopsis/enzimologia , Amycolatopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono-Carbono Liases/genética , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Estabilidade Enzimática/genética , Evolução Molecular , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
J Biol Chem ; 295(10): 3029-3039, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31996372

RESUMO

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.


Assuntos
Carbono-Carbono Liases/metabolismo , Mitocôndrias/metabolismo , Processamento Alternativo , Animais , Células COS , Carbono-Carbono Liases/genética , Chlorocebus aethiops , Éxons , Humanos , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta/genética , Compostos Organofosforados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pterinas/metabolismo
10.
Plant Physiol ; 182(3): 1211-1221, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31941670

RESUMO

The aerial surfaces of land plants have a protective layer of cuticular wax. Alkanes are common components of these waxes, and their abundance is affected by a range of stresses. The CER16 protein has been implicated in alkane biosynthesis in the cuticular wax of Arabidopsis (Arabidopsis thaliana). Here, we identified two new mutant alleles of CER16 in Arabidopsis resulting in production of less wax with dramatically fewer alkanes than the wild type. Map-based cloning with genetic analysis revealed that the cer16 phenotype was caused by complete loss of AT5G44150, encoding a protein with no known domains or motifs. Comparative transcriptomic analysis revealed that transcripts of CER3, previously shown to play a principal role in alkane production, were markedly reduced in the cer16 mutants. To define the relationship between CER3 and CER16, we transformed the full CER3 gene into a cer16 mutant. Transgenic CER3 expression was silenced, and levels of small interfering RNAs targeting CER3 were significantly increased. Mutating two major components of the RNA-silencing machinery in a cer16 genetic background restored CER3 transcript levels to wild-type levels, with the stems restored to wild-type glaucousness. We suggest that CER16 deficiency induces post-transcriptional gene silencing of both endogenous and exogenous expression of CER3.


Assuntos
Alcanos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono-Carbono Liases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
11.
Mol Phylogenet Evol ; 159: 107101, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592235

RESUMO

ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) are key genes in synthesis of alkanes, a major component of cuticular waxes in land plants. The genes share extensive similarity, including the N-terminal (ERG3/FAH) and C-terminal (WAX2) domains. This study, traces the origin, evolutionary history, phylogenetic relationships and variation in copy number of the two genes within and beyond the Viridiplantae (green plants). Protein homologs of both CER1 and CER3 were identified across most Embryophyta (land plants), a single homolog (CER1/3) in charophytes and prasinophytes, and none in the other green, red or brown algae. Ancestral state reconstructions in 100 sequenced Archaeplastida using presence/absence of CER1/3 family genes revealed that the CER1/3 gene probably originated in the common ancestor of Viridiplantae. Phylogenetic analysis of CER1 and CER3 protein sequences from 146 plant species strongly suggests that the two genes originated by duplication of CER1/3 in the ancestral embryophyte. The evolution of CER1 and CER3 genes involved differential divergence of the two domains. Outside Embryophyta, CER1/3 similar sequences identified in diatoms and a cryptophyte, were the closest relatives of the CER1/3 family proteins. Proteins harbouring WAX2-wxAR (WAX2 associated region) similar regions were identified in proteins of bacteria, Archaea, cryptophytes, dinoflagellates and Stramenopiles. The independent existence of both ERG3/FAH and WAX2-wxAR domains in diverse lineages strongly points to the origin of CER1/3 gene in green plants by the fusion of pre-existing domains.


Assuntos
Carbono-Carbono Liases/genética , Embriófitas/genética , Evolução Molecular , Filogenia , Proteínas de Plantas/genética , Alcanos/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas , Ceras/metabolismo
12.
Physiol Plant ; 173(4): 1992-2012, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34487352

RESUMO

Global climate change results in frequent occurrences and/or long durations of abiotic stress. Field grown plants are affected by abiotic stress, and they modulate ethylene in response to abiotic stress exposure and use it as a signaling molecule in stress tolerance mechanisms. However, frequent occurrences and/or long durations of stress conditions can cause plants to induce ethylene levels higher than their thresholds, resulting in a reduction of plant growth and crop productivity. The use of plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase has increased in various plant species to ameliorate the deleterious effects of stress-induced ethylene and promote plant growth despite abiotic stress conditions. Unfortunately, there are restrictions that limit the use of ACC deaminase-producing PGPB to protect plants from abiotic stresses. This review describes how abiotic stress induces ethylene and how stress-induced ethylene adversely affects plant growth. In addition, this review emphasizes the importance of the compatibility of PGPB strains and specific host plants and ACC deaminase activities in the reduction of stress ethylene and the promotion of plant growth, based on the research published in the last 10 years. Moreover, due to the restrictions in PGPB use, this review highlights the potential generation of transgenic plants expressing the AcdS gene that encodes the ACC deaminase enzyme as a substitute for PGPB in the future to support and uplift agricultural sustainability and food security globally.


Assuntos
Carbono-Carbono Liases , Desenvolvimento Vegetal , Bactérias , Carbono-Carbono Liases/genética , Estresse Fisiológico
13.
J Appl Microbiol ; 131(5): 2416-2432, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33884699

RESUMO

AIMS: Since most phosphate solubilizing bacteria (PSB) also produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase, we investigated if there was an association between these two plant growth-promoting properties under in vitro conditions. METHODS AND RESULTS: A total of 841 bacterial isolates were obtained using selective and enrichment isolation methods. ACC deaminase was investigated using in vitro methods and by sequencing the acdS gene. The effect of ACC deaminase on P solubilization was investigated further using five efficient PSB. ACC deaminase production ability was found amongst a wide range of bacteria belonging to the genera Bacillus, Burkholderia, Pseudomonas and Variovorax. The amount of ACC deaminase produced by PSB was significantly associated with the liberation of Pi from Ca-P when ACC was the sole N source. Ca-P solubilization was associated with the degree of acidification of the medium. Additionally, the P solubilization potential of PSB with (NH4 )2 SO4 was determined by the type of carboxylates produced. An in-planta experiment was conducted using Burkholderia sp. 12F on chickpea cv. Genesis-863 in sand : vermiculite (1 : 1 v/v) amended with rock phosphate and inoculation of this efficient PSB significantly increased growth, nodulation and P uptake of chickpea fertilized with rock phosphate. CONCLUSION: ACC deaminase activity influenced the capacity of PSB to solubilize P from Ca-P when ACC was the sole N source and Burkholderia sp. 12F promoted the chickpea-Mesorhizobium symbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY: ACC deaminase activity could enhance the P solubilizing activity of rhizobacteria that improve plant growth.


Assuntos
Burkholderia , Cicer , Carbono-Carbono Liases/genética , Fosfatos , Raízes de Plantas
14.
Biochemistry ; 59(50): 4744-4754, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33270439

RESUMO

The sesquiterpene cyclase epi-isozizaene synthase (EIZS) catalyzes the cyclization of farnesyl diphosphate to form the tricyclic precursor of the antibiotic albaflavenone. The hydrophobic active site is largely defined by aromatic residues that direct a multistep reaction sequence through multiple carbocation intermediates. The previous substitution of polar residues for a key aromatic residue, F96, converts EIZS into a high-fidelity sesquisabinene synthase: the F96S, F96M, and F96Q variants generate 78%, 91%, and 97% sesquisabinene A, respectively. Here, we report high-resolution X-ray crystal structures of two of these reprogrammed cyclases. The structures of the F96M EIZS-Mg2+3-risedronate and F96M EIZS-Mg2+3-inorganic pyrophosphate-benzyltriethylammonium cation complexes reveal structural changes in the F96 aromatic cluster that redirect the cyclization pathway leading from the bisabolyl carbocation intermediate in catalysis. The structure of the F96S EIZS-Mg2+3-neridronate complex reveals a partially occupied inhibitor and an enzyme active site caught in transition between open and closed states. Finally, three structures of wild-type EIZS complexed with the bisphosphonate inhibitors neridronate, pamidronate, and risedronate provide a foundation for understanding binding differences between wild-type and variant enzymes. These structures provide new insight regarding active site flexibility, particularly with regard to the potential for subtle expansion and contraction to accommodate ligands of varying sizes as well as bound water molecules. Additionally, these structures highlight the importance of conformational changes in the F96 aromatic cluster that could influence cation-π interactions with carbocation intermediates in catalysis.


Assuntos
Carbono-Carbono Liases/química , Carbono-Carbono Liases/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/genética , Domínio Catalítico , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Estereoisomerismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo , Água/química
15.
Arch Biochem Biophys ; 691: 108489, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32697946

RESUMO

2-Phosphinomethylmalate synthase (PMMS) from Streptomyces hygroscopicus catalyzes the first step in the biosynthesis of the herbicide bialophos using 3-phosphinopyruvic acid and acetyl coenzyme A as substrates to form 2-phosphinomethylmalic acid and coenzyme A. PMMS belongs to the Claisen condensation-like (CC-like) subgroup of the DRE-TIM metallolyase superfamily, which uses conserved active site architecture to catalyze a functionally-diverse set of reactions. Analysis of a sequence similarity network for the CC-like subgroup identified PMMS and the related R-citrate synthase in an early-diverging cluster suggesting that this group of sequences are more distinct in relation to other Claisen-condensation subgroup members. To better understand the structure/function landscape of the CC-like subgroup PMMS was recombinantly expressed in Escherichia coli, purified, and characterized with respect to its enzymatic properties. Using oxaloacetate as a substrate analog, the recombinantly-produced enzyme exhibited improved Michaelis constants relative to the previously reported natively-produced enzyme. Results from pH rate profiles and kinetic isotope effects were consistent with results from other members of the CC-like subgroup supporting acid-base chemistry and hydrolysis of the direct Claisen-condensation product as the rate-determining step. Results of site-directed mutagenesis experiments indicate that PMMS uses an active-site architecture similar to homocitrate synthase to select for a dicarboxylic acid substrate.


Assuntos
Proteínas de Bactérias/química , Carbono-Carbono Liases/química , Streptomyces/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/isolamento & purificação , Catálise , Domínio Catalítico/genética , Escherichia coli/genética , Cinética , Mutagênese Sítio-Dirigida , Mutação , Ácido Oxaloacético/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
16.
J Appl Microbiol ; 128(2): 556-573, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31652362

RESUMO

AIMS: The main objective of the present work was to evaluate plant growth-promoting abilities of bacterial strains from the rhizosphere of halophytes and their effect on maize growth under salinity stress. METHODS AND RESULTS: Halophilic bacteria were identified using 16S rRNA sequence analysis and their plant growth-promoting abilities were characterized. Phylogenetic analysis showed that bacterial strains belonging to Bacillus, Halobacillus and Pseudomonas were dominant in the rhizosphere of halophytes. More than 93% strains showed P-solubilization activity and IAA production. About 54% strains were able to produce ACC deaminase, 29% strains showed positive results for nitrogen fixation, 41 and 21% strains showed siderophores and HCN production ability respectively. More than 90% strains showed antifungal activity against more than two fungal pathogens and production of different hydrolytic enzymes. To study the plant growth-promoting effect on maize, five bacterial strains Bacillus safensis HL1HP11 and Bacillus pumilus HL3RS14, Kocuria rosea HL1RP8, Enterobacter aerogenes AT1HP4 and Aeromonas veronii AT1RP10 were used as inoculants; in the form of seed coat and enriched soil-based phosphate biofertilizers. All bacterial strains positively affected the maize growth as compared to non-inoculated control + NaCl plants. Plants inoculated with Bacillus HL3RS14-based soil biofertilizers showed maximum increase in dry weights of root (48-124%) and shoot (52-131%) as compared to control + NaCl (soil + rock phosphate, no inoculum). PGPR inoculations under salinity stress conditions showed high concentrations of proline, glycine betaine and malondialdehyde. CONCLUSION: These results indicated that under saline soil conditions, halophilic PGPR strains combined with carrier materials are promising candidates as biofertilizers.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Fosfatos/metabolismo , Filogenia , Cloreto de Sódio/metabolismo , Microbiologia do Solo , Zea mays/microbiologia , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Fertilizantes/análise , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Salinidade , Plantas Tolerantes a Sal/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Solo/química , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
Chem Biodivers ; 17(3): e1900669, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31984627

RESUMO

1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T. albicans leaves, bracts, calyx, corolla and inflorescences. Scanning electron microscopy (SEM) and stereoscope microscopy observations showed the highest peltate trichome density in leaves and bracts, significantly distinct from calyx and corolla. T. albicans volatiles were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC/MS) and by GC for component identification and quantification, respectively. Of the 23 components identified, 1,8-cineole was the dominant volatile (57-93 %) in all T. albicans plant organs. The relative amounts of emitted volatiles clearly separated vegetative from reproductive organs. Gene expression of CIN was assigned to all organs analyzed and was consistent with the relatively high emission of 1,8-cineole in leaves and bracts. Further studies will be required to analyze monoterpenoid biosynthesis by each type of glandular trichome.


Assuntos
Carbono-Carbono Liases/genética , Eucaliptol/metabolismo , Genitália/química , Óleos Voláteis/metabolismo , Thymus (Planta)/metabolismo , Carbono-Carbono Liases/metabolismo , Eucaliptol/química , Flores/química , Flores/metabolismo , Frutas/química , Frutas/metabolismo , Genitália/metabolismo , Óleos Voláteis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Thymus (Planta)/química
18.
J Am Chem Soc ; 141(2): 769-773, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30609896

RESUMO

Pericyclases are an emerging family of enzymes catalyzing pericyclic reactions. A class of lipocalin-like enzymes recently characterized as Diels-Alderases (DAses) catalyze decalin formation through intramolecular Diels-Alder (IMDA) reactions between electron-rich dienes and electron-deficient dienophiles. Using this class of enzyme as a beacon for genome mining, we discovered a biosynthetic gene cluster from Penicillium variabile and identified that it encodes for the biosynthesis of varicidin A (1), a new antifungal natural product containing a cis-octahydrodecalin core. Biochemical analysis reveals a carboxylative deactivation strategy used in varicidin biosynthesis to suppress the nonenzymatic IMDA reaction of an early acyclic intermediate that favors trans-decalin formation. A P450 oxidizes the reactive intermediate to yield a relatively unreactive combination of an electron-deficient diene and an electron-deficient dienophile. The DAse PvhB catalyzes the final stage IMDA on the carboxylated intermediate to form the cis-decalin that is important for the antifungal activity.


Assuntos
Antifúngicos/metabolismo , Carbono-Carbono Liases/química , Naftalenos/metabolismo , Antifúngicos/farmacologia , Aspergillus nidulans/genética , Candida albicans/efeitos dos fármacos , Carbono-Carbono Liases/genética , Reação de Cicloadição , Escherichia coli/genética , Engenharia Genética , Testes de Sensibilidade Microbiana , Família Multigênica , Naftalenos/farmacologia , Penicillium/enzimologia , Saccharomyces cerevisiae/genética
19.
Fungal Genet Biol ; 124: 78-87, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664933

RESUMO

The sesquiterpenoid deoxynivalenol (DON) is an important trichothecene mycotoxin produced by the cereal pathogen Fusarium graminearum. DON is synthesized in specialized subcellular structures called toxisomes. The first step in DON synthesis is catalyzed by the sesquiterpene synthase (STS), Tri5 (trichodiene synthase), resulting in the cyclization of farnesyl diphosphate (FPP) to produce the sesquiterpene trichodiene. Tri5 is one of eight putative STSs in the F. graminearum genome. To better understand the F. graminearum terpenome, the volatile and soluble fractions of fungal cultures were sampled. Stringent regulation of sesquiterpene accumulation was observed. When grown in trichothecene induction medium, the fungus produces trichothecenes as well as several volatile non-trichothecene related sesquiterpenes, whereas no volatile terpenes were detected when grown in non-inducing medium. Surprisingly, a Δtri5 deletion strain grown in inducing conditions not only ceased accumulation of trichothecenes, but also failed to produce the non-trichothecene related sesquiterpenes. To test whether Tri5 from F. graminearum may be a promiscuous STS directly producing all observed sesquiterpenes, Tri5 was cloned and expressed in E. coli and shown to produce primarily trichodiene in addition to minor, related cyclization products. Therefore, while Tri5 expression in F. graminearum is necessary for non-trichothecene sesquiterpene biosynthesis, direct catalysis by Tri5 does not explain the sesquiterpene deficient phenotype observed in the Δtri5 strain. To test whether Tri5 protein, separate from its enzymatic activity, may be required for non-trichothecene synthesis, the Tri5 locus was replaced with an enzymatically inactive, but structurally unaffected tri5N225D S229T allele. This allele restores non-trichothecene synthesis but not trichothecene synthesis. The tri5N225D S229T allele also restores toxisome structure which is lacking in the Δtri5 deletion strain. Our results indicate that the Tri5 protein, but not its enzymatic activity, is also required for the synthesis of non-trichothecene related sesquiterpenes and the formation of toxisomes. Toxisomes thus not only may be important for DON synthesis, but also for the synthesis of other sesquiterpene mycotoxins such as culmorin by F. graminearum.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/metabolismo , Fusarium/metabolismo , Sesquiterpenos/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Cicloexenos/metabolismo , Fusarium/genética , Micotoxinas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo
20.
Planta ; 249(6): 1903-1919, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877435

RESUMO

MAIN CONCLUSION: Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.


Assuntos
Etilenos/metabolismo , Methylobacterium/fisiologia , Oryza/microbiologia , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Endófitos , Genótipo , Oryza/enzimologia , Oryza/genética , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Salino , Estresse Fisiológico , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA