Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.907
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 17(10): 1159-66, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548435

RESUMO

CD1a is a lipid-presenting molecule that is abundantly expressed on Langerhans cells. However, the in vivo role of CD1a has remained unclear, principally because CD1a is lacking in mice. Through the use of mice with transgenic expression of CD1a, we found that the plant-derived lipid urushiol triggered CD1a-dependent skin inflammation driven by CD4(+) helper T cells that produced the cytokines IL-17 and IL-22 (TH17 cells). Human subjects with poison-ivy dermatitis had a similar cytokine signature following CD1a-mediated recognition of urushiol. Among various urushiol congeners, we identified diunsaturated pentadecylcatechol (C15:2) as the dominant antigen for CD1a-restricted T cells. We determined the crystal structure of the CD1a-urushiol (C15:2) complex, demonstrating the molecular basis of urushiol interaction with the antigen-binding cleft of CD1a. In a mouse model and in patients with psoriasis, CD1a amplified inflammatory responses that were mediated by TH17 cells that reacted to self lipid antigens. Treatment with blocking antibodies to CD1a alleviated skin inflammation. Thus, we propose CD1a as a potential therapeutic target in inflammatory skin diseases.


Assuntos
Antígenos CD1/metabolismo , Autoantígenos/metabolismo , Catecóis/metabolismo , Dermatite por Toxicodendron/imunologia , Células de Langerhans/imunologia , Psoríase/imunologia , Células Th17/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Antígenos CD1/genética , Antígenos CD1/imunologia , Catecóis/química , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Interleucina-17/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Conformação Proteica , Toxicodendron/imunologia , Interleucina 22
2.
Proc Natl Acad Sci U S A ; 119(10): e2118227119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238645

RESUMO

SignificanceHost-emitted stress hormones significantly influence the growth and behavior of various bacterial species; however, their cellular targets have so far remained elusive. Here, we used customized probes and quantitative proteomics to identify the target of epinephrine and the α-adrenoceptor agonist phenylephrine in live cells of the aquatic pathogen Vibrio campbellii. Consequently, we have discovered the coupling protein CheW, which is in the center of the chemotaxis signaling network, as a target of both molecules. We not only demonstrate direct ligand binding to CheW but also elucidate how this affects chemotactic control. These findings are pivotal for further research on hormone-specific effects on bacterial behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Catecolaminas/fisiologia , Fatores Quimiotáticos/fisiologia , Quimiotaxia/fisiologia , Vibrio/fisiologia , Catecóis/química , Fatores Quimiotáticos/metabolismo , Ferro/análise , Sondas Moleculares/química , Ligação Proteica , Proteômica/métodos , Transdução de Sinais
3.
Cell Physiol Biochem ; 58(1): 49-62, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38329001

RESUMO

BACKGROUND/AIMS: Bladder cancer is considered one of the most aggressive neoplasms due to its recurrence and progression profile, and even with the improvement in diagnosis and treatment methods, the mortality rate has not shown a declining trend in recent decades. From this perspective, the search and development of more effective and safer therapeutic alternatives are necessary. Phytochemicals are excellent sources of active principles with therapeutic potential. [6]-Shogaol is a phenolic compound extracted from the ginger rhizomes that has shown antitumor effects in a wide variety of cancer models. However, there is no record in the literature of studies reporting these effects in models of bladder cancer. Thus, this study aimed to investigate the in vitro cytotoxic and pro-apoptotic potential of [6]-Shogaol against murine bladder cancer urothelial cells (MB49). METHODS: The cytotoxic effects of [6]-Shogaol on cell viability (MTT method), cell morphology (light microscopy), alteration of proliferative processes (clonogenic assay), oxidative stress pathway (levels of reactive oxygen species) and the induction of apoptotic events (flow cytometry and high-resolution epifluorescence imaging) were evaluated in murine urothelial bladder cancer cell lines (MB49), relative to non-tumor murine fibroblasts (L929). RESULTS: The results showed that [6]-Shogaol was able to induce concentration-dependent cytotoxic effects, which compromised cell viability, exhibiting an inhibitory concentration of 50% of cells (IC50) of 146.8 µM for MB49 tumor cells and 236.0 µM for L929 non-tumor fibroblasts. In addition to inhibiting and altering the proliferative processes if colony formation, it presented pro-apoptotic activity identified through a quantitative analysis and the observation of apoptotic phenotypes, events apparently mediated by the induction of nuclear fragmentation. CONCLUSION: The data presented suggest that [6]-Shogaol has a higher concentration-dependent cytotoxic and apoptosis-inducing potential in MB49 cells than in L929 fibroblasts. These results may contribute to the development of therapeutic alternatives for bladder cancer.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Camundongos , Animais , Humanos , Apoptose , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Catecóis/farmacologia , Catecóis/uso terapêutico , Catecóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
4.
Anal Biochem ; 688: 115464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244752

RESUMO

This study describes the development of a highly sensitive amperometric biosensor for the analysis of phenolic compounds such as catechol. The biosensor architecture is based on the immobilization of tyrosinase (Tyr) on a screen-printed carbon electrode (SPE) modified with nanodiamond particles (ND), 1-butyl-3-methylimidazolium hexafluorophosphate (IL) and poly-l-lysine (PLL). Surface morphologies of the electrodes during the modification process were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical characteristics of the modified electrodes. Owing to the synergistic effect of the modification materials, the Tyr/PLL/ND-IL/SPE exhibited high sensitivity (328.2 µA mM-1) towards catechol with a wide linear range (5.0 × 10-8 - 1.2 × 10-5 M) and low detection limit (1.1 × 10-8 M). Furthermore, the method demonstrated good reproducibility and stability. The amperometric response of the biosensor towards other phenolic compounds such as bisphenol A, phenol, p-nitrophenol, m-cresol, p-cresol and o-cresol was also investigated. The analytical applicability of the biosensor was tested by the analysis of catechol in tap water. The results of the tap water analysis showed that the Tyr/PLL/ND-IL/SPE can be used as a practical and effective method for catechol determination.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanodiamantes , Líquidos Iônicos/análise , Polilisina , Reprodutibilidade dos Testes , Fenóis/análise , Catecóis/análise , Catecóis/química , Monofenol Mono-Oxigenase/química , Carbono/química , Água , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos
5.
Biomacromolecules ; 25(5): 2914-2924, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676646

RESUMO

With the increasing number of diabetic patients in the world, there is an urgent requirement to reduce the incidence of diabetes. It is considered that a viable prophylactic treatment for type 2 diabetes mellitus is to reduce starch digestibility and oxidative stress. In this study, a novel type of slowly digested starch [pea starch (PS)-gingerol complex] was fabricated to evaluate its in vitro enzymatic digestibility and antioxidant activities. Theoretical and experimental analyses showed that PS can encapsulate gingerols with long alkyl chains to form starch-gingerol complexes, which are further stacked into a mixture of V6- and V7-crystallites. These complexes, in particular the PS-10-gingerol complex, showed high resistance to amylolysis and good antioxidant activities. This study demonstrates that these novel starch-gingerol complexes have the potential to deliver antioxidants encapsulated in starch with slow-digesting properties and reduce oxidative stress. Moreover, this new type of slowly digested starch with antioxidant properties showed great potential in the prevention of type 2 diabetes.


Assuntos
Antioxidantes , Catecóis , Diabetes Mellitus Tipo 2 , Álcoois Graxos , Amido , Amido/química , Antioxidantes/química , Álcoois Graxos/química , Catecóis/química , Diabetes Mellitus Tipo 2/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Humanos
6.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582422

RESUMO

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Assuntos
Antimônio , Catecóis , Técnicas Eletroquímicas , Hidroquinonas , Pirólise , Hidroquinonas/química , Hidroquinonas/análise , Catecóis/análise , Catecóis/química , Antimônio/química , Antimônio/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Sulfetos/química
7.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731606

RESUMO

The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.


Assuntos
Glucose , Substâncias Húmicas , Reação de Maillard , Polifenóis , Substâncias Húmicas/análise , Glucose/química , Glucose/metabolismo , Polifenóis/química , Catecóis/química
8.
Angew Chem Int Ed Engl ; 63(19): e202402405, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407513

RESUMO

Antibacterial resistance is a major threat for human health. There is a need for new antibacterials to stay ahead of constantly-evolving resistant bacteria. Nucleic acid therapeutics hold promise as powerful antibiotics, but issues with their delivery hamper their applicability. Here, we exploit the siderophore-mediated iron uptake pathway to efficiently transport antisense oligomers into bacteria. We appended a synthetic siderophore to antisense oligomers targeting the essential acpP gene in Escherichia coli. Siderophore-conjugated PNA and PMO antisense oligomers displayed potent antibacterial properties. Conjugates bearing a minimal siderophore consisting of a mono-catechol group showed equally effective. Targeting the lacZ transcript resulted in dose-dependent decreased ß-galactosidase production, demonstrating selective protein downregulation. Applying this concept to Acinetobacter baumannii also showed concentration-dependent growth inhibition. Whole-genome sequencing of resistant mutants and competition experiments with the endogenous siderophore verified selective uptake through the siderophore-mediated iron uptake pathway. Lastly, no toxicity towards mammalian cells was found. Collectively, we demonstrate for the first time that large nucleic acid therapeutics can be efficiently transported into bacteria using synthetic siderophore mimics.


Assuntos
Acinetobacter baumannii , Antibacterianos , Catecóis , Escherichia coli , Sideróforos , Sideróforos/química , Sideróforos/farmacologia , Catecóis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Testes de Sensibilidade Microbiana , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo
9.
J Biol Chem ; 298(7): 102046, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597283

RESUMO

Streptococcus pneumoniae (pneumococcus) is a Gram-positive commensal and human respiratory pathogen. How this bacterium satisfies its nutritional iron (Fe) requirement in the context of endogenously produced hydrogen peroxide is not well understood. Here, we characterize a novel virulence-associated Rrf2-family transcriptional repressor that we term SifR (streptococcal IscR-like family transcriptional repressor) encoded by spd_1448 and conserved in Streptococci. Global transcriptomic analysis of a ΔsifR strain defines the SifR regulon as genes encoding a candidate catechol dioxygenase CatE, an uncharacterized oxidoreductase YwnB, a candidate flavin-dependent ferric reductase YhdA, a candidate heme-based ferric reductase domain-containing protein and the Piu (pneumococcus iron uptake) Fe transporter (piuBCDA). Previous work established that membrane-anchored PiuA binds FeIII-bis-catechol or monocatechol complexes with high affinity, including the human catecholamine stress hormone, norepinephrine. We demonstrate that SifR senses quinone via a single conserved cysteine that represses its regulon when in the reduced form. Upon reaction with catechol-derived quinones, we show that SifR dissociates from the DNA leading to regulon derepression, allowing the pneumococcus to access a catechol-derived source of Fe while minimizing reactive electrophile stress induced by quinones. Consistent with this model, we show that CatE is an FeII-dependent 2,3-catechol dioxygenase with broad substrate specificity, YwnB is an NAD(P)H-dependent quinone reductase capable of reducing the oxidized and cyclized norepinephrine, adrenochrome, and YhdA is capable of reducing a number of FeIII complexes, including PiuA-binding transport substrates. These findings are consistent with a model where FeIII-catechol complexes serve as significant nutritional Fe sources in the host.


Assuntos
Proteínas de Bactérias , Catecóis , Ferro , Quinonas , Streptococcus pneumoniae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catecóis/química , Catecóis/metabolismo , Dioxigenases/metabolismo , Ferro/metabolismo , Norepinefrina/metabolismo , Quinonas/metabolismo , Regulon , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
10.
J Am Chem Soc ; 145(28): 15230-15250, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37414058

RESUMO

The extradiol dioxygenases (EDOs) and intradiol dioxygenases (IDOs) are nonheme iron enzymes that catalyze the oxidative aromatic ring cleavage of catechol substrates, playing an essential role in the carbon cycle. The EDOs and IDOs utilize very different FeII and FeIII active sites to catalyze the regiospecificity in their catechol ring cleavage products. The factors governing this difference in cleavage have remained undefined. The EDO homoprotocatechuate 2,3-dioxygenase (HPCD) and IDO protocatechuate 3,4-dioxygenase (PCD) provide an opportunity to understand this selectivity, as key O2 intermediates have been trapped for both enzymes. Nuclear resonance vibrational spectroscopy (in conjunction with density functional theory calculations) is used to define the geometric and electronic structures of these intermediates as FeII-alkylhydroperoxo (HPCD) and FeIII-alkylperoxo (PCD) species. Critically, in both intermediates, the initial peroxo bond orientation is directed toward extradiol product formation. Reaction coordinate calculations were thus performed to evaluate both the extra- and intradiol O-O cleavage for the simple organic alkylhydroperoxo and for the FeII and FeIII metal catalyzed reactions. These results show the FeII-alkylhydroperoxo (EDO) intermediate undergoes facile extradiol O-O bond homolysis due to its extra e-, while for the FeIII-alkylperoxo (IDO) intermediate the extradiol cleavage involves a large barrier and would yield the incorrect extradiol product. This prompted our evaluation of a viable mechanism to rearrange the FeIII-alkylperoxo IDO intermediate for intradiol cleavage, revealing a key role in the rebinding of the displaced Tyr447 ligand in this rearrangement, driven by the proton delivery necessary for O-O bond cleavage.


Assuntos
Dioxigenases , Dioxigenases/química , Compostos Férricos , Catecóis/química , Análise Espectral , Compostos Ferrosos
11.
J Am Chem Soc ; 145(42): 22866-22870, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844210

RESUMO

Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.


Assuntos
Cobre , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/química , Cobre/química , Domínio Catalítico , Fenóis/química , Catecóis/química , Cinética
12.
Chembiochem ; 24(24): e202300628, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37850717

RESUMO

This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.


Assuntos
Peptídeos beta-Amiloides , Melaninas , Peptídeos beta-Amiloides/metabolismo , Melaninas/química , Amiloide/química , Proteínas Amiloidogênicas , Catecóis/química
13.
Biomacromolecules ; 24(2): 613-627, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36594453

RESUMO

This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 µg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 µg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 µg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas , Quitosana/farmacologia , Quitosana/química , Polímeros/farmacologia , Catecóis/farmacologia , Catecóis/química , Nanopartículas/química , Anti-Infecciosos/farmacologia
14.
Bioorg Med Chem Lett ; 88: 129286, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054761

RESUMO

l-DOPA, a dopamine precursor, is commonly used as a treatment for patients with conditions such as Parkinson's disease. This therapeutic l-DOPA, as well as the dopamine derived from l-DOPA, can be deactivated via metabolism by catechol-O-methyltransferase (COMT). Targeted inhibition of COMT prolongs the effectiveness of l-DOPA and dopamine, resulting in a net increase in pharmacological efficiency of the treatment strategy. Following the completion of a previous ab initio computational analysis of 6-substituted dopamine derivatives, several novel catecholic ligands with a previously unexplored neutral tail functionality were synthesized in good yields and their structures were confirmed. The ability of the catecholic nitriles and 6-substituted dopamine analogues to inhibit COMT was tested. The nitrile derivatives inhibited COMT most effectively, in agreement with our previous computational work. pKa values were used to further examine the factors involved with the inhibition and molecular docking studies were performed to support the ab initio and experimental work. The nitrile derivatives with a nitro substituent show the most promise as inhibitors, confirming that both the neutral tail and the electron withdrawing group are essential on this class of inhibitors.


Assuntos
Dopamina , Levodopa , Humanos , Dopamina/metabolismo , Levodopa/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Catecóis/farmacologia , Catecóis/química , Nitrilas/farmacologia , Inibidores Enzimáticos/farmacologia
15.
Bioorg Med Chem ; 78: 117147, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587551

RESUMO

The naturally-occurring di-catechol lignan nordihydroguaiaretic acid (NDGA) and an analog without methyl groups on the butyl linker both undergo intramolecular cyclization at pH 7.4 to form dibenzocyclooctadienes. Both NDGA and these dibenzocyclooctadienes have been shown to prevent in vitro aggregation of α-synuclein, an intrinsically disordered protein associated with Parkinson's disease. NDGA possesses two vicinal methyl groups on the butyl linker and the presence of these methyl groups attenuates the rate of intramolecular cyclization versus the unsubstituted analog, in opposition to the anticipated Thorpe-Ingold effect, likely due to steric repulsions during cyclization. Numerous 1,2-bis-ethane di-catechols are known to inhibit α-synuclein aggregation in vitro and we hypothesize that these compounds undergo a similar intramolecular cyclization and the cyclized products may be responsible for the activity. To test this hypothesis we prepared a series of 1,2-bis-ethane di-catechols with 0, 2 and 4 methyl substituents on the linker. We have confirmed that these compounds undergo intramolecular cyclization to form dibenzocyclohexadienes and that steric interactions between the methyl substituents leads to an increase in the rate of intramolecular cyclization, which is in contrast to what was observed for lignan di-catechols. The rate of cyclization to form six-membered rings is 10-30 times more rapid than formation of eight membered rings and the dibenzocyclohexadienes also prevent in vitro aggregation of α-synuclein.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Masoprocol/metabolismo , Masoprocol/farmacologia , Catecóis/química , Ciclização
16.
Macromol Rapid Commun ; 44(6): e2200845, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36457197

RESUMO

Marine-inspired phenolic compounds that exhibit underwater adhesion are used as biomedical adhesives under wet conditions. While these applications mainly use catechol and pyrogallol moieties that contain different numbers of hydroxyl groups on their benzene rings, how this difference affects adhesion and cohesion is not well understood. Herein, the chitosan backbone is functionalized with catechol and pyrogallol at similar modification rates (to give chitosan-catechol (CS-CA) and chitosan-pyrogallol (CS-GA), respectively) and their interaction energies are compared by using a surface forces apparatus (SFA). The phenolic moieties decrease the rigidity of the chitosan chain and increase solubility; consequently, CS-CA and CS-GA are more cohesive and adhesive than chitosan at pH 7.4. Moreover, the additional hydroxyl group of GA provides a further interacting chance; hence, CS-GA is more cohesive and adhesive than CS-CA. This study provides in-depth insight into interactions involving chitosan derivatives bearing introduced phenolic moieties that will help to develop biomedical adhesives.


Assuntos
Adesivos , Catecóis , Quitosana , Pirogalol , Adesividade , Adesivos/química , Catecóis/química , Quitosana/química , Ácido Gálico/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Pirogalol/química , Solubilidade , Eletricidade Estática , Termodinâmica
17.
Proc Natl Acad Sci U S A ; 117(14): 7613-7621, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209666

RESUMO

Inspired largely by the role of the posttranslationally modified amino acid dopa (DOPA) in mussel adhesion, catechol functional groups have become commonplace in medical adhesives, tissue scaffolds, and advanced smart polymers. Yet, the complex redox chemistry of catechol groups complicates cross-link regulation, hampering fabrication and the long-term stability/performance of mussel-inspired polymers. Here, we investigated the various fates of DOPA residues in proteins comprising mussel byssus fibers before, during, and after protein secretion. Utilizing a combination of histological staining and confocal Raman spectroscopy on native tissues, as well as peptide-based cross-linking studies, we have identified at least two distinct DOPA-based cross-linking pathways during byssus fabrication, achieved by oxidative covalent cross-linking or formation of metal coordination interactions under reducing conditions, respectively. We suggest that these end states are spatiotemporally regulated by the microenvironments in which the proteins are stored prior to secretion, which are retained after formation-in particular, due to the presence of reducing moieties. These findings provide physicochemical pathways toward greater control over properties of synthetic catechol-based polymers and adhesives.


Assuntos
Bivalves/metabolismo , Catecóis/metabolismo , Di-Hidroxifenilalanina/metabolismo , Sequência de Aminoácidos , Animais , Catecóis/química , Oxirredução , Peptídeos/química , Peptídeos/metabolismo
18.
Chem Biodivers ; 20(3): e202201166, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36762430

RESUMO

The catecholase activities were routinely modeled using transition metal complexes as catalyst and in some case basic pH were used as a reaction condition. In this article, the catalytic aerobic oxidation of proxy substrate 3,5-di-tert-butylcatechol (DTBC) in methanol using triethylamine/diethylamine as catalyst was demonstrated as a functional mimic of catecholase activity. The kinetic manifestation of DTBC oxidation was explained as enzymatic substrate inhibition pattern in Michaelis-Menten kinetic model. The mechanistic insight of the aerobic oxidation of DTBC was further validated using various spectroscopic techniques and DFT methods.


Assuntos
Catecol Oxidase , Complexos de Coordenação , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Catecóis/química , Complexos de Coordenação/química , Metais , Oxirredução , Cobre/química , Cristalografia por Raios X
19.
Phytochem Anal ; 34(3): 259-268, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36594354

RESUMO

INTRODUCTION: Ginger constitutes the rhizome part of the plant Zingiber officinale from the Zingiberaceae family. A large number of ginger varieties with high sensorial and functional quality are found in Northeast India. Hence, phytopharmacological screening of different ginger varieties is essential that will serve as a guideline in applied research to develop high-end products and improve economical margins. OBJECTIVE: To determine the variation in total phenolics content (TPC), total flavonoids content (TFC), and antioxidant activities and correlate that with 6-gingerol contents of different ginger varieties collected from Northeast India using Pearson's correlation analysis. MATERIALS AND METHODS: The TPC and TFC values were determined using standard methods. Antioxidant activities were measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assays, while reversed-phase high-performance liquid chromatography (RP-HPLC) analysis was utilised for quantitative determination of 6-gingerol content. RESULTS: The result revealed that ginger variety 6 (GV6) contains the highest 6-gingerol content and TPC value showing maximum antioxidant activity, followed by GV5, GV4, GV9, GV3, GV2, GV8, GV1, and GV7. The findings also suggested that the antioxidant activity has much better correlations with TPC as compared with TFC values. Pearson's correlation analysis showed a significant correlation between 6-gingerol contents and TPC values. CONCLUSION: This work underlines the importance of ginger varieties from Northeast India as a source of natural antioxidants with health benefits.


Assuntos
Antioxidantes , Zingiber officinale , Antioxidantes/química , Flavonoides/análise , Zingiber officinale/química , Catecóis/análise , Catecóis/química , Catecóis/farmacologia , Fenóis/química , Extratos Vegetais/química
20.
Angew Chem Int Ed Engl ; 62(1): e202211552, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334012

RESUMO

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.


Assuntos
Cobre , Metaloproteínas , Cobre/química , Catecóis/química , Metaloproteínas/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA