Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68.924
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 79-98, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800327

RESUMO

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Assuntos
DNA/imunologia , Imunidade Inata , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Biomarcadores , Citoplasma/imunologia , Citoplasma/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo
2.
Cell ; 187(2): 228-234, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242080

RESUMO

This personal story recounts the accidental observation, the struggles, the breakthroughs, and the collaborative spirit of a few individuals that led to the discovery that bacterial cells expend energy to effectively fluidize their otherwise "glass-like" cytoplasm and promote the dispersal of large cytoplasmic components. This adventure, which led us into an uncharted world at the intersection of cell biology and condensed matter physics about ten years ago, forever transformed the way I view cells and conduct research.


Assuntos
Bactérias , Citoplasma , Humanos , Citosol , Bactérias/citologia
3.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503283

RESUMO

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLa
4.
Cell ; 187(2): 481-494.e24, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194965

RESUMO

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.


Assuntos
Proteínas do Citoesqueleto , Aprendizado de Máquina , Adesão Celular , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Modelos Biológicos
5.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
6.
Cell ; 186(1): 8-9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608660

RESUMO

Much of our foundational knowledge of cellular biology comes from studies in budding yeast, often described as a simple unicellular eukaryotic model. In this issue of Cell, Correia-Melo et al. describe an unappreciated feature of yeast biology involving intra-cellular metabolite exchange, where cells adapt and respond as part of a community, and go on to show that sharing of resources linked to methionine metabolism enhances longevity of cooperating cells.


Assuntos
Longevidade , Saccharomycetales , Saccharomyces cerevisiae/metabolismo , Células Eucarióticas , Citoplasma
7.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36738734

RESUMO

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Citoplasma , Neurônios Motores , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
8.
Cell ; 185(14): 2576-2590.e12, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623357

RESUMO

Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.


Assuntos
Linhagem da Célula , Cistos , Oócitos , Animais , Apoptose , Crescimento Celular , Cistos/genética , Cistos/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Ovário/citologia , Ovário/embriologia , Ovário/metabolismo
9.
Annu Rev Biochem ; 90: 559-579, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33492991

RESUMO

Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.


Assuntos
Antiporters/química , Antiporters/metabolismo , Fluoretos/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Citoplasma/metabolismo , Fluoretos/toxicidade , Transporte de Íons , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Annu Rev Biochem ; 90: 535-558, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33556281

RESUMO

Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Agrecanas/química , Agrecanas/genética , Agrecanas/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Transporte Biológico , Cálcio/metabolismo , Cardiolipinas/metabolismo , Sequência Conservada , Citoplasma/metabolismo , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Mutação , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell ; 184(22): 5506-5526, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715021

RESUMO

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Assuntos
Envelhecimento/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Doença , Animais , Humanos , Micronúcleo Germinativo/metabolismo , Retroelementos/genética
12.
Cell ; 184(11): 2896-2910.e13, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34048705

RESUMO

Damaged mitochondria need to be cleared to maintain the quality of the mitochondrial pool. Here, we report mitocytosis, a migrasome-mediated mitochondrial quality-control process. We found that, upon exposure to mild mitochondrial stresses, damaged mitochondria are transported into migrasomes and subsequently disposed of from migrating cells. Mechanistically, mitocytosis requires positioning of damaged mitochondria at the cell periphery, which occurs because damaged mitochondria avoid binding to inward motor proteins. Functionally, mitocytosis plays an important role in maintaining mitochondrial quality. Enhanced mitocytosis protects cells from mitochondrial stressor-induced loss of mitochondrial membrane potential (MMP) and mitochondrial respiration; conversely, blocking mitocytosis causes loss of MMP and mitochondrial respiration under normal conditions. Physiologically, we demonstrate that mitocytosis is required for maintaining MMP and viability in neutrophils in vivo. We propose that mitocytosis is an important mitochondrial quality-control process in migrating cells, which couples mitochondrial homeostasis with cell migration.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Movimento Celular/fisiologia , Citoplasma/metabolismo , Exocitose/fisiologia , Feminino , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Organelas/metabolismo
13.
Cell ; 184(11): 2911-2926.e18, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932338

RESUMO

Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.


Assuntos
Cílios/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Optogenética/métodos , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo
14.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
15.
Cell ; 181(3): 512-514, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32359433

RESUMO

Guo and colleagues discover a new layer of complexity to the lncRNA evolution where positionally conserved lncRNAs in human ESCs are broadly spliced and exported to the cytoplasm contrary to their mouse counterpart that are predominantly unspliced and nuclear retained. Distinct processing leads to species-specific lncRNA function in pluripotency maintenance.


Assuntos
RNA Longo não Codificante , Animais , Núcleo Celular , Citoplasma , Humanos , Camundongos , RNA Longo não Codificante/genética , Células-Tronco
16.
Cell ; 181(2): 306-324.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302570

RESUMO

Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Estruturas Citoplasmáticas/fisiologia , Mapas de Interação de Proteínas/fisiologia , Fenômenos Biofísicos , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Extração Líquido-Líquido/métodos , Organelas/química , RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/fisiologia
17.
Cell ; 182(6): 1519-1530.e17, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32846156

RESUMO

Cells relay a plethora of extracellular signals to specific cellular responses by using only a few second messengers, such as cAMP. To explain signaling specificity, cAMP-degrading phosphodiesterases (PDEs) have been suggested to confine cAMP to distinct cellular compartments. However, measured rates of fast cAMP diffusion and slow PDE activity render cAMP compartmentalization essentially impossible. Using fluorescence spectroscopy, we show that, contrary to earlier data, cAMP at physiological concentrations is predominantly bound to cAMP binding sites and, thus, immobile. Binding and unbinding results in largely reduced cAMP dynamics, which we term "buffered diffusion." With a large fraction of cAMP being buffered, PDEs can create nanometer-size domains of low cAMP concentrations. Using FRET-cAMP nanorulers, we directly map cAMP gradients at the nanoscale around PDE molecules and the areas of resulting downstream activation of cAMP-dependent protein kinase (PKA). Our study reveals that spatiotemporal cAMP signaling is under precise control of nanometer-size domains shaped by PDEs that gate activation of downstream effectors.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Simulação por Computador , AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes , Análise Espaço-Temporal , Espectrometria de Fluorescência
18.
Cell ; 181(2): 325-345.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302571

RESUMO

The mechanisms underlying ribonucleoprotein (RNP) granule assembly, including the basis for establishing and maintaining RNP granules with distinct composition, are unknown. One prominent type of RNP granule is the stress granule (SG), a dynamic and reversible cytoplasmic assembly formed in eukaryotic cells in response to stress. Here, we show that SGs assemble through liquid-liquid phase separation (LLPS) arising from interactions distributed unevenly across a core protein-RNA interaction network. The central node of this network is G3BP1, which functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations. Moreover, we show that interplay between three distinct intrinsically disordered regions (IDRs) in G3BP1 regulates its intrinsic propensity for LLPS, and this is fine-tuned by phosphorylation within the IDRs. Further regulation of SG assembly arises through positive or negative cooperativity by extrinsic G3BP1-binding factors that strengthen or weaken, respectively, the core SG network.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Estruturas Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Fosforilação , RNA/metabolismo
19.
Cell ; 181(2): 346-361.e17, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302572

RESUMO

Stressed cells shut down translation, release mRNA molecules from polysomes, and form stress granules (SGs) via a network of interactions that involve G3BP. Here we focus on the mechanistic underpinnings of SG assembly. We show that, under non-stress conditions, G3BP adopts a compact auto-inhibited state stabilized by electrostatic intramolecular interactions between the intrinsically disordered acidic tracts and the positively charged arginine-rich region. Upon release from polysomes, unfolded mRNAs outcompete G3BP auto-inhibitory interactions, engendering a conformational transition that facilitates clustering of G3BP through protein-RNA interactions. Subsequent physical crosslinking of G3BP clusters drives RNA molecules into networked RNA/protein condensates. We show that G3BP condensates impede RNA entanglement and recruit additional client proteins that promote SG maturation or induce a liquid-to-solid transition that may underlie disease. We propose that condensation coupled to conformational rearrangements and heterotypic multivalent interactions may be a general principle underlying RNP granule assembly.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Conformação de Ácido Nucleico , Organelas/metabolismo , Fosforilação , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
20.
Cell ; 183(3): 636-649.e18, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031745

RESUMO

Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Alarminas/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Degeneração Neural/patologia , Fosfotransferases (Aceptor do Grupo Álcool) , Subunidades Proteicas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA