RESUMO
Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use ß-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.
Assuntos
Amônia , Citrulina , Citrulina/metabolismo , Amônia/metabolismo , Ureia/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Óxido Nítrico , Arginina/metabolismo , Arginase/metabolismoRESUMO
Citrulline can be converted into argininosuccinate by argininosuccinate synthetase (ASS1) in the urea cycle and the citrulline-nitric oxide cycle. However, the regulation and biological function of citrulline metabolism remain obscure in the immune system. Unexpectedly, we found that macrophage citrulline declines rapidly after interferon gamma (IFN-γ) and/or lipopolysaccharide (LPS) stimulation, which is required for efficient proinflammatory signaling activation. Mechanistically, IFN-γ and/or LPS stimulation promotes signal transducers and activators of transcription 1 (STAT1)-mediated ASS1 transcription and Janus kinase2 (JAK2)-mediated phosphorylation of ASS1 at tyrosine 87, thereby leading to citrulline depletion. Reciprocally, increased citrulline directly binds to JAK2 and inhibits JAK2-STAT1 signaling. Blockage of ASS1-mediated citrulline depletion suppresses the host defense against bacterial infection in vivo. We therefore define a central role for ASS1 in controlling inflammatory macrophage activation and antibacterial defense through depletion of cellular citrulline and, further, identify citrulline as an innate immune-signaling metabolite that engages a metabolic checkpoint for proinflammatory responses.
Assuntos
Argininossuccinato Sintase/metabolismo , Citrulina/metabolismo , Imunidade Inata , Inflamação/enzimologia , Listeriose/enzimologia , Ativação de Macrófagos , Macrófagos/enzimologia , Animais , Argininossuccinato Sintase/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Células RAW 264.7 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de SinaisRESUMO
The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.
Assuntos
Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Óxido Nítrico Sintase Tipo II , Animais , Artrite/imunologia , Artrite/metabolismo , Citrulina/metabolismo , Cianatos/metabolismo , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ornitina/metabolismo , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Salmonella typhimurium/imunologiaRESUMO
All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.
Assuntos
Arginina , Ligases , Arginina/metabolismo , Citrulina/metabolismo , Amônia , Ornitina/genética , Trifosfato de Adenosina/metabolismo , Fosfatos , Adenosina , CatáliseRESUMO
Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.
Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Monócitos , Humanos , Desiminases de Arginina em Proteínas , Monócitos/metabolismo , Autoantígenos , Autoanticorpos , Fibrinogênio/metabolismo , Citrulina/metabolismoRESUMO
Post-translational modifications of histones regulate all DNA-templated processes, including replication, transcription and repair. These modifications function as platforms for the recruitment of specific effector proteins, such as transcriptional regulators or chromatin remodellers. Recent data suggest that histone modifications also have a direct effect on nucleosomal architecture. Acetylation, methylation, phosphorylation and citrullination of the histone core may influence chromatin structure by affecting histone-histone and histone-DNA interactions, as well as the binding of histones to chaperones.
Assuntos
Reparo do DNA , DNA/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Citrulina/metabolismo , Replicação do DNA , Histonas/genética , Humanos , Metilação , Chaperonas Moleculares/genética , Nucleossomos/química , Nucleossomos/genética , Fosforilação , Transcrição GênicaRESUMO
Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.
Assuntos
Células Endoteliais , Metabolômica , Microvasos , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Metabolômica/métodos , Microvasos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Células Endoteliais/metabolismo , Arginina/metabolismo , Dispositivos Lab-On-A-Chip , Células Cultivadas , Citrulina/metabolismoRESUMO
Severe sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation. We hypothesized that increasing arginine availability would restore T cell function and decrease sepsis-induced immunosuppression. Using a mouse model of sepsis based on cecal ligation and puncture and secondary pneumonia triggered by methicillin-resistant Staphylococcus aureus inoculation, we demonstrated that citrulline administration was more efficient than arginine in increasing arginine plasma levels and restoring T cell mitochondrial function and proliferation while reducing sepsis-induced Treg and MDSC expansion. Because there is no specific therapeutic strategy to restore immune function after sepsis, we believe that our study provides evidence for developing citrulline-based clinical studies in sepsis.
Assuntos
Citrulina/farmacologia , Mitocôndrias/metabolismo , Sepse/tratamento farmacológico , Animais , Arginina/deficiência , Arginina/metabolismo , Disponibilidade Biológica , Citrulina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Tolerância Imunológica/imunologia , Terapia de Imunossupressão/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Sepse/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologiaRESUMO
The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.
Assuntos
Arginina , Bacillus subtilis , Ornitina , Fator sigma , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Elastin is an extracellular matrix protein (ECM) that supports elasticity of the lung, and in patients with chronic obstructive pulmonary disease (COPD) and emphysema, the structural changes that reduce the amount of elastic recoil, lead to loss of pulmonary function. We recently demonstrated that elastin is a target of peptidyl arginine deiminase (PAD) enzyme-induced citrullination, thereby leading to enhanced susceptibility of this ECM protein to proteolysis. This study aimed to investigate the impact of PAD activity in vivo and furthermore assessed whether pharmacological inhibition of PAD activity protects against pulmonary emphysema. Using a Serpina1a-e knockout mouse model, previously shown to develop inflammation-mediated emphysema, we validated the involvement of PADs in airway disease. In line with emphysema development, intratracheal administration of lipopolysaccharide in combination with PADs provoked significant airspace enlargement (P < 0.001) and diminished lung function, including loss of lung tissue elastance (P = 0.0217) and increases in lung volumes (P = 0.0463). Intraperitoneal treatment of mice with the PAD inhibitor, BB-Cl-amidine, prevented PAD/LPS-mediated lung function decline and emphysema and reduced levels of citrullinated airway elastin (P = 0.0199). These results provide evidence for the impact of PADs on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.NEW & NOTEWORTHY This study provides evidence for the impact of peptidyl arginine deiminase (PAD) enzymes on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Assuntos
Citrulinação , Elastina , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica , Animais , Masculino , Camundongos , alfa 1-Antitripsina/metabolismo , Citrulina/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologiaRESUMO
The sustained immunosuppression associated with severe sepsis favors an increased susceptibility to secondary infections and remains incompletely understood. Plasmablast and plasma cell subsets, whose primary function is to secrete antibodies, have emerged as important suppressive populations that expand during sepsis. In particular, sepsis supports CD39hi plasmablast metabolic reprogramming associated with adenosine-mediated suppressive activity. Arginine deficiency has been linked to an increased risk of secondary infections in sepsis. Overcoming arginine shortage by citrulline administration efficiently improves sepsis-induced immunosuppression and secondary infections in the cecal ligation and puncture murine model. Here, we aimed to determine the impact of citrulline administration on B cell suppressive responses in sepsis. We demonstrate that restoring arginine bioavailability through citrulline administration markedly reduces the dominant extrafollicular B cell response, decreasing the immunosuppressive LAG3+ and CD39+ plasma cell populations, and restoring splenic follicles. At the molecular level, the IRF4/MYC-mediated B cell reprogramming required for extrafollicular plasma cell differentiation is shunted in the splenic B cells of mice fed with citrulline. Our study reveals a prominent impact of nutrition on B cell responses and plasma cell differentiation and further supports the development of citrulline-based clinical studies to prevent sepsis-associated immune dysfunction.
Assuntos
Coinfecção , Sepse , Camundongos , Animais , Citrulina/metabolismo , Arginina , Imunossupressores , Diferenciação CelularRESUMO
Rheumatoid arthritis is an autoimmune disease whose early onset correlates with dysregulated citrullination, a process catalyzed by peptidylarginine deiminase isoform 4 (PADI-4). Here, we report that PADI-4 is a novel target of vitamin B12, a water-soluble vitamin that serves as a cofactor in DNA synthesis and the metabolism of fatty and amino acids. Vitamin B12 preferentially inhibited PADI-4 over PADI-2 with comparable inhibitory activity to the reference compound Cl-amidine in enzymatic inhibition assays, and reduced total cellular citrullination levels including that of histone H3 citrullination mediated by PADI-4. We also demonstrated that hydroxocobalamin, a manufactured form of vitamin B12, significantly ameliorated the severity of collagen type II antibody induced arthritis (CAIA) in mice and diminished gene expression of the rheumatoid inflammatory factors and cytokines IL17A, TNFα, IL-6, COX-II and ANXA2, as well PADI-4. Therefore, the use of vitamin B12 to treat rheumatoid arthritis merits further study.
Assuntos
Artrite Reumatoide , Vitamina B 12 , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Hidrolases/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Citrulina/metabolismo , Anticorpos , ColágenoRESUMO
Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.
Assuntos
Citrulinemia , Hiperamonemia , Animais , Humanos , Citrulinemia/patologia , Peixe-Zebra/genética , Citrulina , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Fenótipo , Hiperamonemia/genéticaRESUMO
OBJECTIVE: Liver transplantation (LTx) is an intervention when medical management is not sufficiently preventing individuals with urea cycle disorders (UCDs) from the occurrence of hyperammonemic events. Supplementation with L-citrulline/arginine is regularly performed prior to LTx to support ureagenesis and is often continued after the intervention. However, systematic studies assessing the impact of long-term L-citrulline/arginine supplementation in individuals who have undergone LTx is lacking to date. METHODS: Using longitudinal data collected systematically, a comparative analysis was carried out by studying the effects of long-term L-citrulline/arginine supplementation vs. no supplementation on health-related outcome parameters (i.e., anthropometric, neurological, and cognitive outcomes) in individuals with UCDs who have undergone LTx. Altogether, 52 individuals with male ornithine transcarbamylase deficiency, citrullinemia type 1 and argininosuccinic aciduria and a pre-transplant "severe" disease course who have undergone LTx were investigated by using recently established and validated genotype-specific in vitro enzyme activities. RESULTS: Long-term supplementation of individuals with L-citrulline/arginine who have undergone LTx (n = 16) does neither appear to alter anthropometric nor neurocognitive endpoints when compared to their severity-adjusted counterparts that were not supplemented (n = 36) after LTx with mean observation periods between four to five years. Moreover, supplementation with L-citrulline/arginine was not associated with an increase of disease-specific plasma arithmetic mean values for the respective amino acids when compared to the non-supplemented control cohort. CONCLUSION: Although supplementation with L-citrulline/arginine is often continued after LTx, this pilot study does neither identify altered long-term anthropometric or neurocognitive health-related outcomes nor does it find an adequate biochemical response as reflected by the unaltered plasma arithmetic mean values for L-citrulline or L-arginine. Further prospective analyses in larger samples and even longer observation periods will provide more insight into the usefulness of long-term supplementation with L-citrulline/arginine for individuals with UCDs who have undergone LTx.
Assuntos
Transplante de Fígado , Distúrbios Congênitos do Ciclo da Ureia , Masculino , Humanos , Citrulina/uso terapêutico , Arginina/metabolismo , Projetos Piloto , Distúrbios Congênitos do Ciclo da Ureia/tratamento farmacológico , Distúrbios Congênitos do Ciclo da Ureia/cirurgia , Suplementos Nutricionais , Ureia/metabolismoRESUMO
Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.
Assuntos
Aedes , Culex , Animais , Óxido Nítrico , Hemócitos , Citrulina , Escherichia coli , Mosquitos VetoresRESUMO
PURPOSE OF REVIEW: Stable isotope methods have been used for many years to assess whole body protein and amino acid kinetics in critically ill patients. In recent years, new isotope approaches and tracer insights have been developed. The tracer pulse approach has some advantages above the established primed-continuous tracer infusion approach because of the high amount of metabolic information obtained, easy applicability, and low tracer costs. Effects of disease severity and sex on amino acid kinetics in ICU patients will also be addressed. RECENT FINDINGS: Current knowledge was synthesized on specific perturbations in amino acid metabolism in critically ill patients, employing novel methodologies such as the pulse tracer approach and computational modeling. Variations were evaluated in amino acid production and linked to severity of critical illness, as measured by SOFA score, and sex. Production of the branched-chain amino acids (BCAAs), glutamine, tau-methylhistidine and hydroxyproline were elevated in critical illness, likely related to increased transamination of the individual BCAAs or increased breakdown of proteins. Citrulline production was reduced, indicative of impaired gut mucosa function. Sex and disease severity independently influenced amino acid kinetics in ICU patients. SUMMARY: Novel tracer and computational approaches have been developed to simultaneously measure postabsorptive kinetics of multiple amino acids that can be used in critical illness. The collective findings lay the groundwork for targeted individualized nutritional strategies in ICU settings aimed at enhancing patient outcomes taking into account disease severity and sex.
Assuntos
Estado Terminal , Proteínas , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Citrulina/metabolismo , Isótopos , Proteínas/metabolismo , Masculino , FemininoRESUMO
BACKGROUND: Environmental enteric dysfunction (EED) is associated with stunting. Citrulline, produced in mature enterocytes, may be a valuable biomarker of small intestinal enterocyte mass in the context of EED. OBJECTIVES: We aimed to explore the correlates of plasma citrulline (p-cit) in children with stunting. METHODS: In a cross-sectional study using baseline data from the community-based MAGNUS (milk affecting growth, cognition and the gut in child stunting) trial (ISRCTN13093195), we explored potential correlates of p-cit in Ugandan children with stunting aged 12-59 mo. Using linear regression in univariate and multivariate models, we explored associations with socioeconomics, diet, micronutrient status, and water, sanitation, and hygiene characteristics. The influence of covariates age, fasting, and systemic inflammation were also explored. RESULTS: In 750 children, the mean ± standard deviation age was 32.0 ± 11.7 mo, and height-for-age z-score was -3.02 ± 0.74. P-cit, available for 730 children, differed according to time fasted and was 20.7 ± 8.9, 22.3 ± 10.6 and 24.2 ± 13.1 µmol/L if fasted <2, 2-5 and >5 h, respectively. Positive correlates of p-cit were age [0.07; 95% confidence interval (CI): 0.001, 0.15 µmol/L] and log10 serum insulin-like growth factor-1 (8.88; 95% CI: 5.09, 12.67 µmol/L). With adjustment for systemic inflammation, the association with serum insulin-like growth factor-1 reduced (4.98; 95% CI: 0.94, 9.03 µmol/L). Negative correlates of p-cit included food insecurity, wet season (-3.12; 95% CI: -4.97, -1.26 µmol/L), serum C-reactive protein (-0.15; 95% CI: -0.20, -0.10 µmol/L), serum α1-acid glycoprotein (-5.34; 95% CI: -6.98, -3.70 µmol/L) and anemia (-1.95; 95% CI: -3.72, -0.18 µmol/L). Among the negatively correlated water, sanitation, and hygiene characteristics was lack of soap for handwashing (-2.53; 95% CI: -4.82, -0.25 µmol/L). Many associations attenuated with adjustment for inflammation. CONCLUSIONS: Many of the correlates of p-cit are characteristic of populations with a high EED prevalence. Systemic inflammation is strongly associated with p-cit and is implicated in EED and stunting. Adjustment for systemic inflammation attenuates many associations, reflecting either confounding, mediation, or both. This study highlights the complex interplay between p-cit and systemic inflammation.
Assuntos
Citrulina , Enterócitos , Criança , Humanos , Enterócitos/metabolismo , Estudos Transversais , Uganda , Transtornos do Crescimento/epidemiologia , Inflamação/metabolismo , ÁguaRESUMO
The MT-TL2 m.12315G>A pathogenic variant has previously been reported in five individuals with mild clinical phenotypes. Herein we report the case of a 5-year-old child with heteroplasmy for this variant who developed neurological regression and stroke-like episodes similar to those observed in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical evaluation revealed depletion of arginine on plasma amino acid analysis and low z-scores for citrulline on untargeted plasma metabolomics analysis. These findings suggested that decreased availability of nitric oxide may have contributed to the stroke-like episodes. The use of intravenous arginine during stroke-like episodes and daily enteral L-citrulline supplementation normalized her biochemical values of arginine and citrulline. Untargeted plasma metabolomics showed the absence of nicotinamide and 1-methylnicotinamide, and plasma total glutathione levels were low; thus, nicotinamide riboside and N-acetylcysteine therapies were initiated. This report expands the phenotype associated with the rare mitochondrial variant MT-TL2 m.12315G>A to include neurological regression and a MELAS-like phenotype. Individuals with this variant should undergo in-depth biochemical analysis to include untargeted plasma metabolomics, plasma amino acids, and glutathione levels to help guide a targeted approach to treatment.
Assuntos
Acidose Láctica , Síndrome MELAS , Encefalomiopatias Mitocondriais , Acidente Vascular Cerebral , Pré-Escolar , Feminino , Humanos , Arginina/genética , Citrulina , Glutationa/metabolismo , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/complicações , Doadores de Óxido Nítrico/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológicoRESUMO
By affecting the ovarian pool of follicles and their enclosed oocytes, heat stress has an impact on dairy cow fertility. This study aimed to determine how heat shock (HS) during in vitro maturation affected the ability of the bovine cumulus-oocyte complexes (COCs) to develop, as well as their metabolism of amino acids (AAs). In this study, COCs were in vitro matured for 23 h at 38.5 °C (control; n = 322), 39.5 °C (mild HS (MHS); n = 290), or 40.5 °C (severe HS (SHS); n = 245). In comparison to the control group, the MHS and SHS groups significantly decreased the percentage of metaphase-II oocytes, as well as cumulus cell expansion and viability. The SHS decreased the rates of cleavage and blastocyst formation in comparison to the control and MHS. Compared to the control and MHS-COCs, the SHS-COCs produced significantly more phenylalanine, threonine, valine, arginine, alanine, glutamic acid, and citrulline while depleting less leucine, glutamine, and serine. Data showed that SHS-COCs had the highest appearance and turnover of all AAs and essential AAs. Heat shock was positively correlated with the appearance of glutamic acid, glutamine, isoleucine, alanine, serine, valine, phenylalanine, and asparagine. Network analysis identified the relationship between HS and alanine or glutamic acid, as well as the relationship between blastocyst and cleavage rates and ornithine. The findings imply that SHS may have an impact on the quality and metabolism of AAs in COCs. Moreover, the use of a multistep analysis could simply identify the AAs most closely linked to HS and the developmental competence of bovine COCs.
Assuntos
Glutamina , Oócitos , Feminino , Bovinos , Animais , Ácido Glutâmico , Alanina , Resposta ao Choque Térmico , Fenilalanina , Valina , Citrulina , SerinaRESUMO
BACKGROUND: Infants with single ventricle heart disease (SVHD) suffer morbidity from insufficient pulmonary blood flow, which may be related to impaired arginine metabolism. No prior study has reported quantitative mapping of arginine metabolites to evaluate the relationship between circulating metabolite levels and outcomes. METHODS: Prospective cohort study of 75 SVHD cases peri-Stage 2 and 50 healthy controls. We targeted pre- and post-op absolute serum quantification of 9 key members of the arginine metabolism pathway by tandem mass spectrometry. Primary outcomes were length of stay (LOS) and post-Stage 2 hypoxemia. RESULTS: Pre-op cases showed alteration in 6 metabolites including decreased arginine and increased asymmetric dimethyl arginine (ADMA) levels compared to controls. Post-op cases demonstrated decreased arginine and citrulline levels persisting through 48 h. Adjusting for clinical variables, lower pre-op and 2 h post-op concentrations of multiple metabolites, including arginine and citrulline, were associated with longer post-op LOS (p < 0.01). Increased ADMA at 24 h was associated with greater post-op hypoxemia burden (p < 0.05). CONCLUSION: Arginine metabolism is impaired in interstage SVHD infants and is further deranged following Stage 2 palliation. Patients with greater metabolite alterations experience greater post-op morbidity. Decreased arginine metabolism may be an important driver of pathology in SVHD. IMPACT: Interstage infants with SVHD have significantly altered arginine-nitric oxide metabolism compared to healthy children with deficiency of multiple pathway intermediates persisting through 48 h post-Stage 2 palliation. After controlling for clinical covariates and classic catheterization-derived predictors of Stage 2 readiness, both lower pre-operation and lower post-operation circulating metabolite levels were associated with longer post-Stage 2 LOS while increased post-Stage 2 ADMA concentration was associated with greater post-op hypoxemia. Arginine metabolism mapping offers potential for development using personalized medicine strategies as a biomarker of Stage 2 readiness and therapeutic target to improve pulmonary vascular health in infants with SVHD.