Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anim Genet ; 55(3): 304-318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419150

RESUMO

Neospora caninum is one of the most frequently diagnosed abortifacient pathogens in cattle. There is abundant genomic information about the parasite itself, but very little is known about the genetic variability of resistance in the most common intermediate host. The aim of this review was to compile all the available information about the genetic variability associated with the resistance to N. caninum both between and within cattle breeds. We systematically searched for published studies that investigated the influence of genetics of the host on the prevalence of N. caninum and risk of abortion. Beyond the potential confounding effects of feeding systems, management and animal density, some lines of evidence suggest that Holstein, the most popular breed for milk production, has a comparatively higher risk of abortion due to infections by N. caninum, whereas some beef breeds from Continental Europe seem to be more resistant. It is still not clear if different genetic mechanisms of resistance are involved in the two known routes of infection: postnatal ingestion of oocysts or transplacental transmission from the infected dam to the fetus. Genomic information associated with susceptibility to infection and risk of abortion in different cattle breeds is still scarce. The information reported here could be useful to identify new research alternatives and to define novel strategies to deal with this major problem of animal production.


Assuntos
Doenças dos Bovinos , Coccidiose , Variação Genética , Neospora , Animais , Bovinos , Neospora/genética , Coccidiose/veterinária , Coccidiose/genética , Doenças dos Bovinos/genética , Doenças dos Bovinos/parasitologia , Resistência à Doença/genética , Aborto Animal/parasitologia , Aborto Animal/genética , Feminino , Gravidez
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125967

RESUMO

The codon usage bias (CUB) of genes encoded by different species' genomes varies greatly. The analysis of codon usage patterns enriches our comprehension of genetic and evolutionary characteristics across diverse species. In this study, we performed a genome-wide analysis of CUB and its influencing factors in six sequenced Eimeria species that cause coccidiosis in poultry: Eimeria acervulina, Eimeria necatrix, Eimeria brunetti, Eimeria tenella, Eimeria praecox, and Eimeria maxima. The GC content of protein-coding genes varies between 52.67% and 58.24% among the six Eimeria species. The distribution trend of GC content at different codon positions follows GC1 > GC3 > GC2. Most high-frequency codons tend to end with C/G, except in E. maxima. Additionally, there is a positive correlation between GC3 content and GC3s/C3s, but a significantly negative correlation with A3s. Analysis of the ENC-Plot, neutrality plot, and PR2-bias plot suggests that selection pressure has a stronger influence than mutational pressure on CUB in the six Eimeria genomes. Finally, we identified from 11 to 15 optimal codons, with GCA, CAG, and AGC being the most commonly used optimal codons across these species. This study offers a thorough exploration of the relationships between CUB and selection pressures within the protein-coding genes of Eimeria species. Genetic evolution in these species appears to be influenced by mutations and selection pressures. Additionally, the findings shed light on unique characteristics and evolutionary traits specific to the six Eimeria species.


Assuntos
Composição de Bases , Uso do Códon , Eimeria , Eimeria/genética , Composição de Bases/genética , Animais , Genoma de Protozoário , Coccidiose/veterinária , Coccidiose/parasitologia , Coccidiose/genética , Evolução Molecular , Códon/genética
3.
Mol Biol Rep ; 50(7): 6171-6175, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231218

RESUMO

Coccidiosis is a significant parasitic disease in goats, with significant impacts on animal health, productivity, and economic losses for producers. Although various management practices can help control and prevent coccidiosis, a growing body of research suggests that genetics play an important role in determining resistance to the disease. This review explores the current understanding of the genetics of coccidiosis resistance in goats, including the potential genetic factors and mechanisms involved, and the implications for breeding and selection programs. The review will also discuss current research and future directions in this field, including the use of genomic tools and technologies to better understand the genetics of resistance and to improve breeding programs for coccidiosis resistance in goats. This review will be of interest to veterinary practitioners, goat producers, animal breeders, and researchers working in the field of veterinary parasitology and animal genetics.


Assuntos
Coccidiose , Doenças das Cabras , Animais , Cabras/genética , Doenças das Cabras/genética , Coccidiose/genética , Coccidiose/veterinária , Coccidiose/prevenção & controle , Previsões
4.
BMC Genomics ; 22(1): 660, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521339

RESUMO

BACKGROUND: Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS: Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS: The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Galinhas/genética , Coccidiose/genética , Coccidiose/veterinária , Eimeria tenella/genética , Perfilação da Expressão Gênica , Doenças das Aves Domésticas/genética , RNA-Seq
5.
Cell Microbiol ; 21(7): e13027, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30941872

RESUMO

Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N-terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co-immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.


Assuntos
Coccidiose/genética , Eimeria tenella/genética , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Animais , Apoptose/genética , Galinhas/parasitologia , Coccidiose/parasitologia , Eimeria tenella/patogenicidade , Pontos de Checagem da Fase G1 do Ciclo Celular , Fosfotransferases/genética , Proteoma/genética , Esporozoítos/genética , Esporozoítos/patogenicidade , Toxoplasma/genética , Toxoplasma/patogenicidade , Fatores de Virulência/genética
6.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670552

RESUMO

Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii and has been studied for causing neuromuscular disease in dogs and abortions in cattle. It is recognized as one of the main transmissible causes of reproductive failure in cattle and consequent economic losses to the sector. In that sense, this study aimed to evaluate the role of Toll-like receptor 3 (TLR3)-TRIF-dependent resistance against N. caninum infection in mice. We observed that TLR3-/- and TRIF-/- mice presented higher parasite burdens, increased inflammatory lesions, and reduced production of interleukin 12p40 (IL-12p40), tumor necrosis factor (TNF), gamma interferon (IFN-γ), and nitric oxide (NO). Unlike those of T. gondii, N. caninum tachyzoites and RNA recruited TLR3 to the parasitophorous vacuole (PV) and translocated interferon response factor 3 (IRF3) to the nucleus. We also observed that N. caninum upregulated the expression of TRIF in murine macrophages, which in turn upregulated IFN-α and IFN-ß in the presence of the parasite. Furthermore, TRIF-/- infected macrophages produced lower levels of IL-12p40, while exogenous IFN-α replacement was able to completely restore the production of this key cytokine. Our results show that the TLR3-TRIF signaling pathway enhances resistance against N. caninum infection in mice, since it improves Th1 immune responses that result in controlled parasitism and reduced tissue inflammation, which are hallmarks of the disease.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Coccidiose/imunologia , Coccidiose/parasitologia , Neospora/fisiologia , RNA de Protozoário/imunologia , Receptor 3 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Coccidiose/genética , Feminino , Interações Hospedeiro-Parasita , Humanos , Interferon gama/genética , Interferon gama/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neospora/genética , Neospora/imunologia , Óxido Nítrico/imunologia , RNA de Protozoário/genética , Células Th1/imunologia , Células Th1/parasitologia , Receptor 3 Toll-Like/genética
7.
BMC Ecol ; 19(1): 12, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836982

RESUMO

BACKGROUND: Parasite infections can have substantial impacts on population dynamics and are accordingly a key challenge for wild population management. Here we studied genetic mechanisms driving parasite resistance in a large herbivore through a comprehensive approach combining measurements of neutral (16 microsatellites) and adaptive (MHC DRB1 exon 2) genetic diversity and two types of gastrointestinal parasites (nematodes and coccidia). RESULTS: While accounting for other extrinsic and intrinsic predictors known to impact parasite load, we show that both neutral genetic diversity and DRB1 are associated with resistance to gastrointestinal nematodes. Intermediate levels of multi-locus heterozygosity maximized nematodes resistance, suggesting that both in- and outbreeding depression might occur in the population. DRB1 heterozygosity and specific alleles effects were detected, suggesting the occurrence of heterozygote advantage, rare-allele effects and/or fluctuating selection. On the contrary, no association was detected between genetic diversity and resistance to coccidia, indicating that different parasite classes are impacted by different genetic drivers. CONCLUSIONS: This study provides important insights for large herbivores and wild sheep pathogen management, and in particular suggests that factors likely to impact genetic diversity and allelic frequencies, including global changes, are also expected to impact parasite resistance.


Assuntos
Coccidiose/veterinária , Resistência à Doença/genética , Variação Genética , Enteropatias Parasitárias/veterinária , Repetições de Microssatélites , Infecções por Nematoides/veterinária , Doenças dos Ovinos/genética , Animais , Coccídios/fisiologia , Coccidiose/genética , Coccidiose/parasitologia , Feminino , Enteropatias Parasitárias/genética , Enteropatias Parasitárias/parasitologia , Nematoides/fisiologia , Infecções por Nematoides/genética , Infecções por Nematoides/parasitologia , Ovinos , Doenças dos Ovinos/parasitologia , Carneiro Doméstico
8.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006392

RESUMO

Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii Neosporosis caused by N. caninum is considered one of the main causes of abortion in cattle and nervous-system dysfunction in dogs, and identification of the virulence factors of this parasite is important for the development of control measures. Here, we used a luciferase reporter assay to screen the dense granule proteins genes of N. caninum, and we found that NcGRA6, NcGRA7, and NcGRA14 are involved in the activation of the NF-κB, calcium/calcineurin, and cAMP/PKA signals. To analyze the functions of these proteins and Neospora cyclophilin, we successfully knocked out their genes in the Nc1 strain using plasmids containing the CRISPR/Cas9 components. Among the deficient lines, the NcGRA7-deficient parasites showed reduced virulence in mice. An RNA sequencing analysis of infected macrophage cultures showed that NcGRA7 mainly regulates the host cytokine and chemokine production. The levels of gamma interferon in the ascites fluid, CXCL10 expression in the peritoneal cells, and CCL2 expression in the spleen were lower 5 days after infection with the NcGRA7-deficient parasite than after infection with the parental strain. The parasite burden and the degree of necrosis in the brains of mice infected with the NcGRA7-deficient parasite were also lower than in those of the parental strain. Collectively, our data suggest that both the NcGRA7-dependent activation of the inflammatory response and the parasite burden are important in Neospora virulence.IMPORTANCENeospora caninum invades and replicates in a broad range of host species and cells within those hosts. The effector proteins exported by Neospora induce its pathogenesis by modulating the host immunity. We show that most of the transcriptomic effects in N. caninum-infected cells depend upon the activity of NcGRA7. A deficiency in NcGRA7 reduced the virulence of the parasite in mice. This study demonstrates the importance of NcGRA7 in the pathogenesis of neosporosis.


Assuntos
Coccidiose/imunologia , Neospora/metabolismo , Neospora/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Coccidiose/genética , Coccidiose/parasitologia , Citocinas/genética , Citocinas/imunologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neospora/genética , Proteínas de Protozoários/genética , Virulência
9.
Genet Sel Evol ; 50(1): 63, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463512

RESUMO

BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).


Assuntos
Galinhas/genética , Coccidiose/veterinária , Eimeria tenella/patogenicidade , Interleucina-10/sangue , Animais , Peso Corporal/genética , Ceco/patologia , Coccidiose/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interleucina-10/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/genética , Aumento de Peso/genética
10.
Parasitol Res ; 116(10): 2707-2719, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803361

RESUMO

Toxoplasma gondii and Neospora caninum are closely related intracellular protozoan parasites and tissue cyst-forming Coccidia of the phylum Apicomplexa. There are remarkable similarities between the morphology, genomes and transcriptomes of both parasites. Toxoplasma is zoonotic, with a wide host range and is mainly transmitted horizontally between its definitive host, the cat, and its intermediate hosts. Neospora causes disease within a narrow host range and with reduced virulence potential to the hosts. The dog is the definitive host of Neospora and its epidemiology in cattle mainly depends on vertical transmission. What causes these biological differences is not well understood. Since these parasites secrete an array of secretory proteins, including kinases, during infection to manipulate host cell responses. Host-parasite interactions due to phosphorylation of host cell proteins by T. gondii kinases enhance virulence and maintenance of infection. In this study, proteome-wide phosphorylation events of host cell proteins were investigated in response to infection with T. gondii and N. caninum using phosphoproteomic analyses, followed by pathway analysis on host signalling pathways. A few interesting differences in host responses at both the qualitative and quantitative levels were identified between the two infections; about one third of the phosphoproteomes, approximately 21% of the phospho-motifs and several pathways such as glycolysis/gluconeogenesis and mTOR pathways of the host cell were found differentially enriched between infection with these parasites. Identifying the differences in host-parasite interactions represents a promising step forward for uncovering the biological dissimilarities between both parasites.


Assuntos
Coccidiose/metabolismo , Neospora/fisiologia , Proteínas/metabolismo , Proteoma/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/metabolismo , Coccidiose/genética , Coccidiose/parasitologia , Interações Hospedeiro-Parasita , Humanos , Fosforilação , Proteínas/genética , Proteólise , Proteoma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
11.
Parasite Immunol ; 38(7): 419-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27136454

RESUMO

Cytotoxic cells of the immune system may kill infected or transformed host cells via the perforin/granzyme or the Fas ligand (FasL) pathways. The purpose of this study was to determine mRNA expression of perforin, granzyme A and FasL in Eimeria tenella-infected tissues at primary infection and infection of immune chickens as an indirect measure of cytotoxic cell activity. Chickens were rendered immune by repeated E. tenella infections, which were manifested as an absence of clinical signs or pathological lesions and significantly reduced oocyst production upon challenge infection. During primary E. tenella infection, perforin, granzyme A and FasL mRNA expression in caecal tissue was significantly increased at 10 days after infection, compared to uninfected birds. In contrast, at infection of immune birds, perforin and granzyme A mRNA expression in caecal tissue was significantly increased during the early stages of E. tenella challenge infection, days 1-4, which coincided with a substantial reduction of parasite replication in these birds. These results indicate the activation of cytotoxic pathways in immune birds and support a role for cytotoxic T cells in the protection against Eimeria infections.


Assuntos
Ceco/parasitologia , Coccidiose/veterinária , Eimeria tenella/fisiologia , Proteína Ligante Fas/genética , Granzimas/genética , Perforina/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/parasitologia , Animais , Ceco/imunologia , Galinhas/genética , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/genética , Coccidiose/imunologia , Coccidiose/parasitologia , Eimeria tenella/genética , Eimeria tenella/crescimento & desenvolvimento , Proteína Ligante Fas/imunologia , Granzimas/imunologia , Perforina/imunologia , Doenças das Aves Domésticas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/parasitologia
12.
J Eukaryot Microbiol ; 63(6): 709-721, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27037629

RESUMO

The gene of Eimeria acervulina microneme protein 3 (EaMIC3) was cloned and characterized. According to the conserved sequence, the 3'- and 5'-ends of EaMIC3 were amplified by the rapid amplification of cDNA ends (RACE). The full length cDNA of this gene was obtained by overlapping the sequences of 3'- and 5'-extremities and amplification by reverse transcription PCR. The sequence analysis revealed that the opening reading frame (ORF) of EaMIC3 was 2,607 bp and encoded a protein of 868 amino acids with 93.04 kDa. Western blotting assay showed that the recombinant protein was successfully recognized by the sera of chickens experimentally infected with E. acervulina, whereas the native protein in the somatic extract of sporozoites was as well detected by sera from rats immunized with the recombinant protein of EaMIC3. Immunofluorescence analysis indicated that EaMIC3 was expressed in the sporozoites and merozoites stages of E. acervulina. Animal challenge experiments demonstrated that the recombinant protein of EaMIC3 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented anticoccidial index (ACI) more than 165. Moreover, EaMIC3 protein produced significantly high level of IgG antibody, IFN-γ, IL-10, IL-17 TGF-ß, CD4+ , and CD8+ .


Assuntos
Coccidiose/veterinária , Eimeria/genética , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Galinhas , Coccidiose/genética , Coccidiose/imunologia , Coccidiose/parasitologia , Eimeria/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia
13.
Br Poult Sci ; 57(2): 165-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26942865

RESUMO

The present study was conducted to compare the susceptibility of congenic Fayoumi lines to Eimeria tenella infection and to assess genetic differences in Eimeria egression. Chickens were orally inoculated with 5 × 10(4) sporulated E. tenella oocysts and challenged with 5 × 10(6) oocysts on the 10th day after the primary infection. The Fayoumi M5.1 line exhibited higher levels of body weight gain, less oocyst shedding and higher percentages of B and CD4(+)/CD8(+) T cells than the M15.2 chickens. These results demonstrate that M5.1 line is more resistant to E. tenella infection than M15.2 line. Furthermore, the percentage of sporozoite egress from peripheral blood mononuclear cells (PBMCs) was higher in the M5.1 line. The results of this study suggest that enhanced resistance of Fayoumi M5.1 to E. tenella infection may involve heightened cell-mediated and adaptive immunity, resulting in reduced intracellular development of Eimeria parasites.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria tenella/fisiologia , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Animais , Coccidiose/genética , Coccidiose/imunologia , Coccidiose/parasitologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/parasitologia , Suscetibilidade a Doenças/veterinária , Linfócitos/imunologia , Linfócitos/parasitologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/parasitologia , Esporozoítos/fisiologia
14.
Immunology ; 145(2): 242-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25581844

RESUMO

The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.


Assuntos
Tecido Adiposo/imunologia , Coccidiose/imunologia , Macrófagos/imunologia , Neospora/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Adipocinas/genética , Adipocinas/imunologia , Tecido Adiposo/parasitologia , Tecido Adiposo/patologia , Animais , Coccidiose/genética , Coccidiose/patologia , Imunidade Celular/genética , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/patologia , Células Th1/patologia
15.
Parasitol Res ; 114(11): 4327-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341796

RESUMO

Eimeria ninakohlyakimovae is an important coccidian parasite of goats which causes severe diarrhoea in young animals. Specific molecules that mediate E. ninakohlyakimovae host interactions and molecular mechanisms involved in the pathogenesis are still unknown. Although strong circumstantial evidence indicates that E. ninakohlyakimovae sporozoite interactions with caprine endothelial host cells (ECs) are specific, hardly any information is available about the interacting molecules that confer host cell specificity. In this study, we describe a novel method to identify surface proteins of caprine umbilical vein endothelial cells (CUVEC) using a phage display library. After several panning rounds, we identified a number of peptides that specifically bind to the surface of CUVEC. Importantly, caprine endothelial cell peptide 2 (PCEC2) and PCEC5 selectively reduced the infection rate by E. ninakohlyakimovae sporozoites. These preliminary data give new insight for the molecular identification of ligands involved in the interaction between E. ninakohlyakimovae sporozoites and host ECs. Further studies using this phage approach might be useful to identify new potential target molecules for the development of anti-coccidial drugs or even new vaccine strategies.


Assuntos
Coccidiose/veterinária , Eimeria/fisiologia , Células Endoteliais/imunologia , Doenças das Cabras/imunologia , Biblioteca de Peptídeos , Peptídeos/imunologia , Animais , Coccidiose/genética , Coccidiose/imunologia , Coccidiose/parasitologia , Eimeria/crescimento & desenvolvimento , Células Endoteliais/parasitologia , Doenças das Cabras/genética , Doenças das Cabras/parasitologia , Cabras , Interações Hospedeiro-Parasita , Ligantes , Peptídeos/genética , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/fisiologia
16.
Parasitol Res ; 114(1): 283-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349142

RESUMO

Parasitic diseases differ in prevalence, course, and severity between males and females. The study was designed to compare males with females for the susceptibility to Eimeria papillata infection as well as the expression of the mucin gene, MUC2. Oocysts output was detected to be more in the feces of male mice (3.5 × 10(4) ± 4000 oocysts/g feces) than in females (2 × 10(4) ± 2000 oocysts/g feces). In addition, infected males showed a significant higher number of meronts, gamonts, and developing oocysts compared to infected female mice. Moreover, E. papillata induced a marked goblet cell hypoplasia where the jejuna of infected male mice contained lower numbers of goblet cells per ten villus-crypt units compared to infected females. Also, the expression of MUC2 mRNA is found to be more expressed in infected females than males. In addition, testosterone, nitric oxide, and inducible nitric oxide synthase activities were found to be higher in infected male mice than in infected females. In general, male Swiss albino mice have been shown to be relatively more susceptible to infection with E. papilaata when compared with female mice.


Assuntos
Coccidiose/parasitologia , Eimeria/crescimento & desenvolvimento , Enteropatias Parasitárias/parasitologia , Mucina-2/genética , Animais , Coccidiose/genética , Coccidiose/metabolismo , Coccidiose/patologia , Suscetibilidade a Doenças , Eimeria/isolamento & purificação , Fezes/parasitologia , Feminino , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Enteropatias Parasitárias/genética , Enteropatias Parasitárias/metabolismo , Enteropatias Parasitárias/patologia , Jejuno/química , Jejuno/parasitologia , Jejuno/patologia , Masculino , Camundongos , Mucina-2/metabolismo , Óxido Nítrico/análise , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oocistos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Testosterona/sangue
17.
Parasitol Res ; 114(4): 1581-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25663104

RESUMO

Plant-based natural products are promising sources for identifying novel agents with potential anti-Eimeria activity. This study explores possible effects of berberine on Eimeria papillata infections in the jejunum of male Swiss albino mice. Berberine chloride, when daily administered to mice during infection, impairs intracellular development and multiplication of E. papillata, evidenced as 60% reduction of maximal fecal output of oocysts on day 5 p.i. Concomitantly, berberine attenuates the inflammatory response, evidenced as decreased messenger RNA (mRNA) expression of IL-1ß, IL-6, TNFα, IFNγ, and iNOS, as well as the oxidative stress response, evidenced as impaired increase in malondialdehyde, nitrate, and H2O2 and as prevented decrease in glutathione and catalase activity. Berberine also alters gene expression in the infected jejunum. On day 5 p.i., mRNA expression of 29 genes with annotated functions is more than 10-fold upregulated and that of 14 genes downregulated. Berberine downregulates the genes Xaf1, Itgb3bp, and Faim3 involved in apoptotic processes and upregulates genes involved in innate immune responses, as e.g., Colec11, Saa2, Klra8, Clec1b, and Crtam, especially the genes Cpa3, Fcer1a, and Mcpt1, Mcpt2, and Mcpt4 involved in mast cell activity. Additionally, 18 noncoding lincRNA species are differentially expressed more than 10-fold under berberine. Our data suggest that berberine induces hosts to exert anti-Eimeria activity by attenuating the inflammatory and oxidative stress response, by impairing apoptotic processes, and by activating local innate immune responses and epigenetic mechanisms in the host jejunum. Berberine has the potential as an anti-Eimeria food additive in animal farming.


Assuntos
Antiprotozoários/farmacologia , Berberina/farmacologia , Coccidiose/tratamento farmacológico , Coccidiose/genética , Eimeria/efeitos dos fármacos , Jejuno/parasitologia , Animais , Apoptose/efeitos dos fármacos , Coccidiose/metabolismo , Coccidiose/parasitologia , Eimeria/fisiologia , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Jejuno/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
18.
Poult Sci ; 94(1): 37-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25577794

RESUMO

We recently developed a novel selection method based on identification and selection of chickens with an inherently high and low phenotype of pro-inflammatory mediators, including interleukin (IL)-6, CXCLi2, and CCLi2. The resultant high line of chickens is more resistant to Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) compared to the low line. In the current study, we sought to determine if the high line birds were also more resistant to the protozoan parasite Eimeria tenella. In three separate experiments, 14-day-old chickens from the high and low lines were challenged orally with 10×10(3) to 45×10(3) E. tenella oocysts. Birds were sacrificed 6 d postchallenge and the caeca was removed and scored for lesions and body weight gain compared to mock-infected controls. The high line birds were more resistant to intestinal pathology as demonstrated by lower lesion scores (P≤0.04) compared to the low line. There were no differences in body weight gain between the lines. The results from this study showed that in addition to enhanced resistance against Salmonella Enteritidis, high line chickens are also more resistant to the pathology associated with coccidial infections compared to the low line birds. Taken together with our initial study utilizing the high and low lines, selection based on increased pro-inflammatory mediator expression produces chickens that are more resistant to both foodborne and poultry pathogens, including cecal pathology associated with costly coccidial infections.


Assuntos
Galinhas , Coccidiose/veterinária , Citocinas/metabolismo , Eimeria/fisiologia , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Animais , Coccidiose/genética , Coccidiose/imunologia , Perfilação da Expressão Gênica/veterinária , Fígado/microbiologia , Doenças das Aves Domésticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/microbiologia
19.
Poult Sci ; 94(7): 1521-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26015586

RESUMO

Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters, and an antimicrobial peptide following an Eimeria praecox challenge of chickens at days 3 and 6 post-infection. Gene expression was determined by real-time PCR and analyzed by one-way ANOVA. In the duodenum, the primary site of E. praecox infection, a number of genes were downregulated at both d3 and d6 post-infection. These genes included liver expressed antimicrobial peptide 2 (LEAP2), the cationic (CAT1), anionic (EAAT3), and L-type (LAT1) amino acid transporters, the peptide transporter PepT1 and the zinc transporter ZnT1. Other transporters were downregulated either at d3 or d6. At both d3 and d6, there was downregulation of B(o)AT and CAT1 in the jejunum and downregulation of LEAP2 and LAT1 in the ileum. LEAP2, EAAT3, and ZnT1 have been found to be downregulated following challenge with other Eimeria species, suggesting a common cellular response to Eimeria.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria/fisiologia , Regulação da Expressão Gênica , Hepcidinas/genética , Proteínas de Membrana Transportadoras/genética , Doenças das Aves Domésticas/genética , Animais , Coccidiose/genética , Coccidiose/metabolismo , Coccidiose/parasitologia , Hepcidinas/metabolismo , Intestinos/enzimologia , Intestinos/parasitologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real
20.
Infect Immun ; 82(9): 3845-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980970

RESUMO

Both interleukin-17A (IL-17A) and IL-17F are proinflammatory cytokines that have an important role in intestinal homeostasis via receptor signaling. These cytokines have been characterized in chickens, but very little is known about their receptors and their functional activity. We provide here the first description of the sequence analysis, bioactivity, and comparative expression analysis of chicken IL-17RA (chIL-17RA) in chickens infected with Salmonella and Eimeria, two major infectious agents of gastrointestinal diseases of poultry of economic importance. A full-length chIL-17RA cDNA with a 2,568-bp coding region was identified from chicken thymus cDNA. chIL-17RA shares ca. 46% identity with mammalian homologues and 29.2 to 31.5% identity with its piscine counterparts. chIL-17RA transcript expression was relatively high in the thymus and in the chicken macrophage cell line HD11. The chIL-17RA-specific small interfering RNA inhibits interleukin-6 (IL-6), IL-8, and IL-1ß mRNA expression in chicken embryo fibroblast cells (but not in DF-1 cells) stimulated with chIL-17A or chIL-17F. Interaction between chIL-17RA and chIL-17A was confirmed by coimmunoprecipitation. Downregulation of chIL-17RA occurred in concanavalin A- or lipopolysaccharide-activated splenic lymphocytes but not in poly(I·C)-activated splenic lymphocytes. In Salmonella- and Eimeria-infected chickens, the expression levels of the chIL-17RA transcript were downregulated in intestinal tissues from chickens infected with two Eimeria species, E. tenella or E. maxima, that preferentially infect the cecum and jejunum, respectively. However, chIL-17RA expression was generally unchanged in Salmonella infection. These results suggest that chIL-17RA has an important role in mucosal immunity to intestinal intracellular parasite infections such as Eimeria infection.


Assuntos
Galinhas/genética , Coccidiose/genética , Regulação para Baixo/genética , Receptores de Interleucina-17/genética , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Embrião de Galinha , Galinhas/parasitologia , Chlorocebus aethiops , Clonagem Molecular/métodos , Coccidiose/parasitologia , DNA Complementar/genética , Eimeria , Fibroblastos/parasitologia , Interleucinas/genética , Intestinos/parasitologia , Linfócitos/metabolismo , Macrófagos/parasitologia , Masculino , Dados de Sequência Molecular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/parasitologia , RNA Mensageiro/genética , Salmonella/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA