Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7955): 199-206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922595

RESUMO

In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Porphyridium , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilissomas/ultraestrutura , Porphyridium/química , Porphyridium/enzimologia , Porphyridium/metabolismo , Porphyridium/ultraestrutura , Microscopia Crioeletrônica , Imagem Individual de Molécula
2.
Nature ; 556(7700): 203-208, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618818

RESUMO

The light-harvesting 1-reaction centre (LH1-RC) complex is a key functional component of bacterial photosynthesis. Here we present a 2.9 Å resolution cryo-electron microscopy structure of the bacteriochlorophyll b-based LH1-RC complex from Blastochloris viridis that reveals the structural basis for absorption of infrared light and the molecular mechanism of quinone migration across the LH1 complex. The triple-ring LH1 complex comprises a circular array of 17 ß-polypeptides sandwiched between 17 α- and 16 γ-polypeptides. Tight packing of the γ-apoproteins between ß-polypeptides collectively interlocks and stabilizes the LH1 structure; this, together with the short Mg-Mg distances of bacteriochlorophyll b pairs, contributes to the large redshift of bacteriochlorophyll b absorption. The 'missing' 17th γ-polypeptide creates a pore in the LH1 ring, and an adjacent binding pocket provides a folding template for a quinone, Q P, which adopts a compact, export-ready conformation before passage through the pore and eventual diffusion to the cytochrome bc 1 complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Hyphomicrobiaceae/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Benzoquinonas/metabolismo , Sítios de Ligação , Complexos de Proteínas Captadores de Luz/metabolismo , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Fotossíntese , Conformação Proteica , Estabilidade Proteica
3.
Nature ; 534(7605): 69-74, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251276

RESUMO

During photosynthesis, the plant photosystem II core complex receives excitation energy from the peripheral light-harvesting complex II (LHCII). The pathways along which excitation energy is transferred between them, and their assembly mechanisms, remain to be deciphered through high-resolution structural studies. Here we report the structure of a 1.1-megadalton spinach photosystem II-LHCII supercomplex solved at 3.2 Å resolution through single-particle cryo-electron microscopy. The structure reveals a homodimeric supramolecular system in which each monomer contains 25 protein subunits, 105 chlorophylls, 28 carotenoids and other cofactors. Three extrinsic subunits (PsbO, PsbP and PsbQ), which are essential for optimal oxygen-evolving activity of photosystem II, form a triangular crown that shields the Mn4CaO5-binding domains of CP43 and D1. One major trimeric and two minor monomeric LHCIIs associate with each core-complex monomer, and the antenna-core interactions are reinforced by three small intrinsic subunits (PsbW, PsbH and PsbZ). By analysing the closely connected interfacial chlorophylls, we have obtained detailed insights into the energy-transfer pathways between the antenna and core complexes.


Assuntos
Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/ultraestrutura , Spinacia oleracea/química , Carotenoides/química , Clorofila/química , Transporte de Elétrons , Subunidades Proteicas/química
4.
Biochemistry ; 60(44): 3302-3314, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699186

RESUMO

Light-harvesting 2 (LH2) antenna complexes augment the collection of solar energy in many phototrophic bacteria. Despite its frequent role as a model for such complexes, there has been no three-dimensional (3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy (cryo-EM) to determine the 2.1 Å resolution structure of this LH2 antenna, which is a cylindrical assembly of nine αß heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution of this structure reveals all of the interpigment and pigment-protein interactions that promote the assembly and energy-transfer properties of this complex. Near the cytoplasmic face of the complex there is a ring of nine BChls, which absorb maximally at 800 nm and are designated as B800; each B800 is coordinated by the N-terminal carboxymethionine of LH2-α, part of a network of interactions with nearby residues on both LH2-α and LH2-ß and with the carotenoid. Nine carotenoids, which are spheroidene in the strain we analyzed, snake through the complex, traversing the membrane and interacting with a ring of 18 BChls situated toward the periplasmic side of the complex. Hydrogen bonds with C-terminal aromatic residues modify the absorption of these pigments, which are red-shifted to 850 nm. Overlaps between the macrocycles of the B850 BChls ensure rapid transfer of excitation energy around this ring of pigments, which act as the donors of energy to neighboring LH2 and reaction center light-harvesting 1 (RC-LH1) complexes.


Assuntos
Proteínas de Bactérias/ultraestrutura , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Proteínas de Bactérias/metabolismo , Bacterioclorofila A/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Microscopia Crioeletrônica/métodos , Transferência de Energia , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestrutura
5.
J Biol Chem ; 295(43): 14537-14545, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32561642

RESUMO

An intriguing molecular architecture called the "semi-crystalline photosystem II (PSII) array" has been observed in the thylakoid membranes in vascular plants. It is an array of PSII-light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII-LHCII supercomplexes in their monomeric and multimeric forms in low light-acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35. When the leaves were acclimated to high light, only the monomeric forms were present, suggesting that the multimeric forms represent a structural adaptation to low light and that disaggregation of the PSII-LHCII supercomplex represents an adaptation to high light. Single-particle EM revealed that the multimeric PSII-LHCII supercomplexes are composed of two ("megacomplex") or three ("arraycomplex") units of PSII-LHCII supercomplexes, which likely constitute a fraction of the semi-crystalline PSII array. Further characterization with fluorescence analysis revealed that multimeric forms have a higher light-harvesting capability but a lower thermal dissipation capability than the monomeric form. These findings suggest that the configurational conversion of PSII-LHCII supercomplexes may serve as a structural basis for acclimation of plants to environmental light.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Folhas de Planta/química , Aclimatação , Chlamydomonas reinhardtii/fisiologia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Folhas de Planta/fisiologia , Conformação Proteica , Multimerização Proteica , Tilacoides/química , Tilacoides/metabolismo
6.
Plant Physiol ; 184(4): 2040-2051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33051267

RESUMO

PSI is an essential component of the photosynthetic apparatus of oxygenic photosynthesis. While most of its subunits are conserved, recent data have shown that the arrangement of the light-harvesting complexes I (LHCIs) differs substantially in different organisms. Here we studied the PSI-LHCI supercomplex of Botryococccus braunii, a colonial green alga with potential for lipid and sugar production, using functional analysis and single-particle electron microscopy of the isolated PSI-LHCI supercomplexes complemented by time-resolved fluorescence spectroscopy in vivo. We established that the largest purified PSI-LHCI supercomplex contains 10 LHCIs (∼240 chlorophylls). However, electron microscopy showed heterogeneity in the particles and a total of 13 unique binding sites for the LHCIs around the PSI core. Time-resolved fluorescence spectroscopy indicated that the PSI antenna size in vivo is even larger than that of the purified complex. Based on the comparison of the known PSI structures, we propose that PSI in B. braunii can bind LHCIs at all known positions surrounding the core. This organization maximizes the antenna size while maintaining fast excitation energy transfer, and thus high trapping efficiency, within the complex.


Assuntos
Arabidopsis/química , Arabidopsis/ultraestrutura , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/ultraestrutura , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas
7.
Proc Natl Acad Sci U S A ; 115(17): 4423-4428, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632169

RESUMO

Photosystem I (PSI) is one of the two photosystems present in oxygenic photosynthetic organisms and functions to harvest and convert light energy into chemical energy in photosynthesis. In eukaryotic algae and higher plants, PSI consists of a core surrounded by variable species and numbers of light-harvesting complex (LHC)I proteins, forming a PSI-LHCI supercomplex. Here, we report cryo-EM structures of PSI-LHCR from the red alga Cyanidioschyzon merolae in two forms, one with three Lhcr subunits attached to the side, similar to that of higher plants, and the other with two additional Lhcr subunits attached to the opposite side, indicating an ancient form of PSI-LHCI. Furthermore, the red algal PSI core showed features of both cyanobacterial and higher plant PSI, suggesting an intermediate type during evolution from prokaryotes to eukaryotes. The structure of PsaO, existing in eukaryotic organisms, was identified in the PSI core and binds three chlorophylls a and may be important in harvesting energy and in mediating energy transfer from LHCII to the PSI core under state-2 conditions. Individual attaching sites of LHCRs with the core subunits were identified, and each Lhcr was found to contain 11 to 13 chlorophylls a and 5 zeaxanthins, which are apparently different from those of LHCs in plant PSI-LHCI. Together, our results reveal unique energy transfer pathways different from those of higher plant PSI-LHCI, its adaptation to the changing environment, and the possible changes of PSI-LHCI during evolution from prokaryotes to eukaryotes.


Assuntos
Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema I/ultraestrutura , Rodófitas/enzimologia , Microscopia Crioeletrônica/métodos , Estrutura Quaternária de Proteína , Rodófitas/ultraestrutura
8.
Biochemistry ; 57(15): 2278-2288, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29577715

RESUMO

The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleaching, revealing multilamellar LHCII-membrane stacks composed of connected lipid bilayers. Both native-like and non-native interactions between the LHCII complexes may contribute to membrane appression in the supported bilayers. However, applying in vivo-like salt conditions to uncharged glycolipid membranes drastically increased the level of stack formation due to enforced LHCII-LHCII interactions, which is in line with recent crystallographic and cryo-electron microscopic data [Wan, T., et al. (2014) Mol. Plant 7, 916-919; Albanese, P., et al. (2017) Sci. Rep. 7, 10067-10083]. Furthermore, we observed the nonbilayer lipid MGDG to strongly promote membrane stacking, pointing to the long-term proposed function of MGDG in stabilizing the inner membrane leaflet of highly curved margins in the periphery of each grana disc because of its negative intrinsic curvature [Murphy, D. J. (1982) FEBS Lett. 150, 19-26].


Assuntos
Diglicerídeos/química , Complexos de Proteínas Captadores de Luz/química , Bicamadas Lipídicas/química , Pisum sativum/enzimologia , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia de Força Atômica , Microscopia Confocal , Pisum sativum/ultraestrutura
9.
Plant J ; 89(1): 104-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598242

RESUMO

Plant photosystem II (PSII) is organized into large supercomplexes with variable levels of membrane-bound light-harvesting proteins (LHCIIs). The largest stable form of the PSII supercomplex involves four LHCII trimers, which are specifically connected to the PSII core dimer via monomeric antenna proteins. The PSII supercomplexes can further interact in the thylakoid membrane, forming PSII megacomplexes. So far, only megacomplexes consisting of two PSII supercomplexes associated in parallel have been observed. Here we show that the forms of PSII megacomplexes can be much more variable. We performed single particle electron microscopy (EM) analysis of PSII megacomplexes isolated from Arabidopsis thaliana using clear-native polyacrylamide gel electrophoresis. Extensive image analysis of a large data set revealed that besides the known PSII megacomplexes, there are distinct groups of megacomplexes with non-parallel association of supercomplexes. In some of them, we have found additional LHCII trimers, which appear to stabilize the non-parallel assemblies. We also performed EM analysis of the PSII supercomplexes on the level of whole grana membranes and successfully identified several types of megacomplexes, including those with non-parallel supercomplexes, which strongly supports their natural origin. Our data demonstrate a remarkable ability of plant PSII to form various larger assemblies, which may control photochemical usage of absorbed light energy in plants in a changing environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/ultraestrutura , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Tilacoides/ultraestrutura
10.
Photosynth Res ; 135(1-3): 203-211, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28039566

RESUMO

Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.


Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Ligação à Clorofila/ultraestrutura , Cromatografia em Gel , Complexos de Proteínas Captadores de Luz/ultraestrutura , Multimerização Proteica
11.
Biochim Biophys Acta Bioenerg ; 1858(5): 379-385, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28257778

RESUMO

Photosynthetic organisms can thermally dissipate excess of absorbed energy in high-light conditions in a process known as non-photochemical quenching (NPQ). In the green alga Chlamydomonas reinhardtii this process depends on the presence of the light-harvesting protein LHCSR3, which is only expressed in high light. LHCSR3 has been shown to act as a quencher when associated with the Photosystem II supercomplex and to respond to pH changes, but the mechanism of quenching has not been elucidated yet. In this work we have studied the interaction between LHCSR3 and Photosystem II C2S2 supercomplexes by single particle electron microscopy. It was found that LHCSR3 predominantly binds at three different positions and that the CP26 subunit and the LHCII trimer of C2S2 supercomplexes are involved in binding, while we could not find evidences for a direct association of LHCSR3 with the PSII core. At all three locations LHCSR3 is present almost exclusively as a dimer.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Sítios de Ligação , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia Eletrônica/métodos , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/ultraestrutura , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
12.
Biochim Biophys Acta Bioenerg ; 1858(9): 795-803, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28587931

RESUMO

In bacterial photosynthesis reaction center-light-harvesting 1 (RC-LH1) complexes trap absorbed solar energy by generating a charge separated state. Subsequent electron and proton transfers form a quinol, destined to diffuse to the cytochrome bc1 complex. In bacteria such as Rhodobacter (Rba.) sphaeroides and Rba. capsulatus the PufX polypeptide creates a channel for quinone/quinol traffic across the LH1 complex that surrounds the RC, and it is therefore essential for photosynthetic growth. PufX also plays a key role in dimerization of the RC-LH1-PufX core complex, and the structure of the Rba. sphaeroides complex shows that the PufX C-terminus, particularly the region from X49-X53, likely mediates association of core monomers. To investigate this putative interaction we analysed mutations PufX R49L, PufX R53L, PufX R49/53L and PufX G52L by measuring photosynthetic growth, fractionation of detergent-solubilised membranes, formation of 2-D crystals and electron microscopy. We show that these mutations do not affect assembly of PufX within the core or photosynthetic growth but they do prevent dimerization, consistent with predictions from the RC-LH1-PufX structure. We obtained low resolution structures of monomeric core complexes with and without PufX, using electron microscopy of negatively stained single particles and 3D reconstruction; the monomeric complex with PufX corresponds to one half of the dimer structure whereas LH1 completely encloses the RC if the gene encoding PufX is deleted. On the basis of the insights gained from these mutagenesis and structural analyses we propose a sequence for assembly of the dimeric RC-LH1-PufX complex.


Assuntos
Proteínas de Bactérias/fisiologia , Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Benzoquinonas/metabolismo , Cristalização , Dimerização , Hidroquinonas/metabolismo , Processamento de Imagem Assistida por Computador , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/fisiologia , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/efeitos da radiação
13.
New Phytol ; 213(2): 714-726, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27620972

RESUMO

Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained.


Assuntos
Sequência Conservada , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Subunidades Proteicas/metabolismo , Estramenópilas/metabolismo , Simbiose , Sequência de Aminoácidos , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Modelos Biológicos , Complexo de Proteína do Fotossistema I/ultraestrutura , Pigmentos Biológicos/metabolismo , Subunidades Proteicas/química , Espectrometria de Fluorescência , Tilacoides/metabolismo
15.
New Phytol ; 210(3): 808-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27001142

RESUMO

Photosynthesis in plants and algae relies on the coordinated function of photosystems (PS) I and II. Their efficiency is augmented by finely-tuned light-harvesting proteins (Lhcs) connected to them. The most recent Lhcs (in evolutionary terms), Lhcb6 and Lhcb3, evolved during the transition of plants from water to land and have so far been considered to be an essential characteristic of land plants. We used single particle electron microscopy and sequence analysis to study architecture and composition of PSII supercomplex from Norway spruce and related species. We have found that there are major land plant families that lack functional lhcb6 and lhcb3 genes, which notably changes the organization of PSII supercomplexes. The Lhcb6 and Lhcb3 proteins have been lost in the gymnosperm genera Picea and Pinus (family Pinaceae) and Gnetum (Gnetales). We also revealed that the absence of these proteins in Norway spruce modifies the PSII supercomplex in such a way that it resembles its counterpart in the alga Chlamydomonas reinhardtii, an evolutionarily older organism. Our results break a deep-rooted concept of Lhcb6 and Lhcb3 proteins being the essential characteristic of land plants, and beg the question of what the evolutionary benefit of their loss could be.


Assuntos
Evolução Biológica , Embriófitas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Plantas/metabolismo , Genes de Plantas , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos
16.
Photosynth Res ; 128(1): 93-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26589322

RESUMO

Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna-Matthews-Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed.


Assuntos
Proteínas de Bactérias/química , Chlorobi/química , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Citoplasma/química , Membranas Intracelulares/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia Eletrônica de Transmissão , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
17.
Plant Cell ; 25(6): 2155-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23898030

RESUMO

In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.


Assuntos
Luz , Estresse Fisiológico , Tilacoides/química , Tilacoides/efeitos da radiação , Galactolipídeos/química , Immunoblotting , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Lipídeos de Membrana/química , Membranas Artificiais , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Fosforilação/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Conformação Proteica , Espectrofotometria Infravermelho , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Spinacia oleracea/efeitos da radiação , Tilacoides/ultraestrutura , Difração de Raios X , Xantofilas/química , Zeaxantinas
18.
Biochim Biophys Acta ; 1837(8): 1263-70, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24685429

RESUMO

The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.


Assuntos
Cromatóforos/ultraestrutura , Transferência de Energia/genética , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Cromatóforos/química , Cromatóforos/metabolismo , Citoplasma/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia de Força Atômica , Rhodobacter sphaeroides/crescimento & desenvolvimento
19.
Plant Cell Environ ; 38(10): 2035-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25737144

RESUMO

The light-harvesting antenna of higher plant photosystem II (LHCII) is the major photosynthetic membrane component encoded by an entire family of homologous nuclear genes. On the contrary, the great majority of proteins of photosystems and electron transport components are encoded by the chloroplast genome. In this work, we succeeded in gradually inhibiting the expression of the chloroplast genes that led to the disappearance of the photosystem complexes, mimicking almost total photoinhibition. The treated plants, despite displaying only some early signs of senescence, sustained their metabolism and growth for several weeks. The only major remaining membrane component was LHCII antenna that formed superstructures - stacks of dozens of thylakoids or supergrana. Freeze-fracture electron microscopy revealed specific organization, directly displaying frequently bifurcated membranes with reduced or totally absent photosystem II (PSII) reaction centre complexes. Our findings show that it is possible to accumulate large amounts of light-harvesting membranes, organized into three-dimensional structures, in the absence of reaction centre complexes. This points to the reciprocal role of LHCII and PSII in self-assembly of the three-dimensional matrix of the photosynthetic membrane, dictating its size and flexible adaptation to the light environment.


Assuntos
Arabidopsis/ultraestrutura , Cloroplastos/ultraestrutura , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/ultraestrutura , Viridiplantae/ultraestrutura , Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Fluorescência , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Prótons , Viridiplantae/metabolismo
20.
Plant Cell ; 24(7): 2963-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22822202

RESUMO

State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.


Assuntos
Arabidopsis/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/química , Zea mays/química , Arabidopsis/metabolismo , Clorofila/metabolismo , Dicroísmo Circular , Transferência de Energia , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Espectrometria de Massas , Modelos Químicos , Complexo de Proteína do Fotossistema I/isolamento & purificação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/ultraestrutura , Isoformas de Proteínas , Multimerização Proteica , Estabilidade Proteica , Espectrometria de Fluorescência , Tilacoides/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA