Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(19): 5963-5974, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552251

RESUMO

Synthesis of nanoparticles (NPs) through plant extracts has been suggested as an effective and nature-friendly method. Paclitaxel is one of the most valuable secondary metabolites with therapeutic uses, and hazelnut has been suggested as one of the sustainable resources for producing this metabolite. In the present study, we synthesized Ag NPs using the ethanolic extract of C. avellana leaves and were characterized using UV-visible, FTIR, XRD, EDX, DLS, SEM, and TEM analyses. In addition, we investigated the effect of green synthesized Ag (GS Ag) NPs (5 and 10 mg/L), para-aminobenzoic acid (PABA) (20 mg/L), and AgNO3 (10 mg/L) on cell viability, physiological characteristics, gene expression, and biosynthesis of secondary metabolites in hazelnut cell cultures. The results showed that 10 mg/L Ag NPs and AgNO3 significantly affected the cell viability, the content of ROS, peroxidation of lipids, antioxidant capacity, secondary metabolite production, and expression pattern of the genes involved in the taxanes biosynthesis pathway in the hazelnut cells. The cytotoxicity increased by increasing the GS Ag NPs concentration from 5 to 10 mg/L, which was associated with reduced membrane integrity and cell viability. Elicitation of the cells with 10 mg/L Ag NPs combined with 20 mg/L PABA (as a precursor) remarkably excited the expression of TAT and GGPPS genes and the production of secondary metabolites as well as paclitaxel. So that the highest expression of TAT and GGPPS genes (3.71 and 3.69) and the highest amount of taxol (230.21 µg g-1 FW) and baccatin (1025.8 µg g-1 FW) were observed in this treatment. KEY POINTS: • For the first time, we assessed and reported the molecular and physiological responses of C. avellana cells to GS Ag NPs, AgNO3, and PABA. • In hazel cells, GS Ag NPs stimulate several physiological and molecular responses. • In addition to increasing antioxidant activity, GS Ag NPs significantly increased the expression of genes involved in the paclitaxel biosynthesis pathway and the production of secondary metabolites.


Assuntos
Corylus , Nanopartículas Metálicas , Paclitaxel , Corylus/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Prata/farmacologia , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Expressão Gênica
2.
Folia Biol (Praha) ; 69(3): 99-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38206775

RESUMO

Hazelnut (Corylus), which has high commercial and nutritional benefits, is an important tree for producing nuts and nut oil consumed as ingredient especially in chocolate. While Corylus avellana L. (Euro-pean hazelnut, Betulaceae) and Corylus colurna L. (Turkish hazelnut, Betulaceae) are the two common hazelnut species in Europe, C. avellana L. (Tombul hazelnut) is grown as the most widespread hazelnut species in Turkey, and C. colurna L., which is the most important genetic resource for hazelnut breeding, exists naturally in Anatolia. We generated the transcriptome data of these two Corylus species and used these data for gene discovery and gene expression profiling. Total RNA from young leaves, flowers (male and female), buds, and husk shoots of C. avellana and C. colurna were used for two different libraries and were sequenced using Illumina HiSeq4000 with 100 bp paired-end reads. The transcriptome data 10.48 and 10.30 Gb of C. avellana and C. colurna, respectively, were assembled into 70,265 and 88,343 unigenes, respectively. These unigenes were functionally annotated using the TRAPID platform. We identified 25,312 and 27,051 simple sequen-ce repeats (SSRs) for C. avellana and C. colurna, respectively. TL1, GMPM1, N, 2MMP, At1g29670, CHIB1 unigenes were selected for validation with qPCR. The first de novo transcriptome data of C. co-lurna were used to compare data of C. avellana of commercial importance. These data constitute a valuable extension of the publicly available transcriptomic resource aimed at breeding, medicinal, and industrial research studies.


Assuntos
Corylus , Corylus/genética , Corylus/metabolismo , Perfilação da Expressão Gênica , Nozes , Turquia
3.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985650

RESUMO

Glycation and the accumulation of advanced glycation end-products (AGEs) are known to occur during aging, diabetes and neurodegenerative diseases. Increased glucose or methylglyoxal (MGO) levels in the blood of diabetic patients result in increased AGEs. A diet rich in bioactive food compounds, like polyphenols, has a protective effect. The aim of this work is to evaluate the capacity of hazelnut skin polyphenolic extract to protect THP-1-macrophages from damage induced by AGEs. The main polyphenolic subclass was identified and quantified by means of HPLC/MS and the Folin-Ciocalteu method. AGEs derived from incubation of bovine serum albumin (BSA) and MGO were characterized by fluorescence. Cell viability measurement was performed to evaluate the cytotoxic effect of the polyphenolic extract in macrophages. Reactive oxygen species' (ROS) production was assessed by the H2-DCF-DA assay, the inflammatory response by real-time PCR for gene expression, and the ELISA assay for protein quantification. We have shown that the polyphenolic extract protected cell viability from damage induced by AGEs. After treatment with AGEs, macrophages expressed high levels of pro-inflammatory cytokines and ROS, whereas in co-treatment with polyphenol extract there was a reduction in either case. Our study suggests that hazelnut skin polyphenol-rich extracts have positive effects and could be further investigated for nutraceutical applications.


Assuntos
Corylus , Eliminação de Resíduos , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Alimentos , Corylus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido de Magnésio , Macrófagos/metabolismo , Aldeído Pirúvico/química , Polifenóis/análise
4.
Plant J ; 105(5): 1413-1430, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33249676

RESUMO

The European hazelnut (Corylus avellana L.) is a tree crop of economic importance worldwide, but especially for northern Turkey, where the majority of production takes place. Hazelnut production is currently challenged by environmental stresses, such as a recent outbreak of severe powdery mildew disease; furthermore, allergy to hazelnuts is an increasing health concern in some regions. In order to provide a foundation for using the available hazelnut genetic resources for crop improvement, we produced a fully assembled genome sequence and annotation for a hazelnut species, from C. avellana cv. 'Tombul', one of the most important Turkish varieties. A hybrid sequencing strategy, combining short reads, long reads and proximity ligation methods, enabled us to resolve heterozygous regions and produce a high-quality 370-Mb assembly that agrees closely with cytogenetic studies and genetic maps of the 11 C. avellana chromosomes, and covers 97.8% of the estimated genome size. The genome includes 27 270 high-confidence protein-coding genes, over 20 000 of which were functionally annotated based on homology with known plant proteins. We focused particularly on gene families encoding hazelnut allergens, and the Mildew resistance Locus O (MLO) proteins that are an important susceptibility factor for powdery mildew. The complete assembly enabled us to differentiate between members of these families and to identify homologues that may be important in mildew disease and hazelnut allergy. These findings provide examples of how the genome can be used to guide research and to develop effective strategies for crop improvement in C. avellana.


Assuntos
Corylus/metabolismo , Proteínas de Plantas/metabolismo , Corylus/genética , Tamanho do Genoma/genética , Proteínas de Plantas/genética
5.
Appl Microbiol Biotechnol ; 106(18): 6017-6031, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35972514

RESUMO

The utilization of plant extracts in nanoparticle (NP) synthesis has been suggested as a nature-friendly method and an efficient alternative to the conventional approaches such as physical and chemical methods. Taxol is a valuable medicinal compound, and hazelnut has been suggested as one of the sustainable resources for producing this metabolite. In the present research, copper oxide (CuO) nanoparticles (NPs) were biologically synthesized by utilizing hazelnut leaf extracts. FTIR, XRD, EDAX, DLS, and SEM analyses were used for characterizing and confirming the synthesized NPs. The effect of biosynthesized CuO NPs (10 and 90 ppm), para-aminobenzoic acid (PABA) (20 ppm), and CuSO4 (10 ppm) on the cell viability, biochemical properties, expression of TAT and GGPPS genes, and accumulation of taxol and baccatin III in hazelnut cell cultures was investigated. The results indicated that biosynthesized CuO NPs significantly influenced the cell viability, amount of ROS, antioxidant capacity, lipid peroxidation, secondary metabolite production, and expression pattern of the genes engaged in the biosynthesis pathway of taxanes in the C. avellana L. cells. The cytotoxicity of CuO NPs to cells was dose dependent and increased with increasing its concentration, as evidenced by a decline in the survival rate and cell membrane integrity. Furthermore, the utilization of 10 ppm CuSO4 caused more toxicity in the cells than the same concentration of CuO NPs. This result could be attributed to the fact that plant extracts components act as a coating for the NPs and reduce their toxicity. Treatment of the cell cultures with CuO (10 ppm) + PABA (20 ppm) and CuO (10 ppm) induced the highest radical scavenging activity. The activity of antioxidant enzymes was increased with increasing the copper oxide NPs level from 10 to 90 ppm. Contrariwise, the cell's survival rate, radical scavenging activity, and amount of secondary metabolites were significantly reduced in the higher levels of copper oxide NPs (90 ppm) compared to the 10 ppm. The combined utilization of 10 ppm copper oxide NPs and 20 ppm PABA considerably stimulated the TAT and GGPPS genes expression and produced the highest amount of taxol and baccatin III. KEY POINTS: • CuO NPs were biologically synthesized using the hazel leaf extracts and confirmed by FTIR, XRD, EDAX, DLS, and SEM analyses. • CuO NPs significantly affected the amount of ROS, antioxidant capacity, and lipid peroxidation in C. avellana L. cells. • Treatment of the hazel cells with CuO NPs increased the production of secondary metabolites including taxol and baccatin III and expression of the genes involved in taxol and baccatin III biosynthesis (TAT and GGPPS).


Assuntos
Corylus , Nanopartículas Metálicas , Nanopartículas , Ácido 4-Aminobenzoico , Antioxidantes/farmacologia , Técnicas de Cultura de Células , Cobre/análise , Corylus/metabolismo , Nanopartículas Metálicas/química , Óxidos , Paclitaxel , Extratos Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062718

RESUMO

Deep eutectic solvents (DESs) are promising green solvents for the extraction of compounds from food byproducts. Hazelnut (Corylus avellana L.) is one of the most commonly cultivated tree nuts worldwide. The skin represents one of the major byproducts of the hazelnut industry and accounts for 2.5% of the total hazelnut kernel weight. It is a rich source of phenolic compounds like flavan-3-ols, flavonols, dihydrochalcones, and phenolic acids. In this work, fifteen DESs based on choline chloride and betaine, with different compositions, were studied in order to test their phenolic compounds extraction efficiency through the determination of their total concentration via Folin-Ciocalteu assay. A qualitative analysis of extracted phenolic compounds was assessed by HPLC with UV and MS detection. Using the DES with the best extraction efficiency, a new ultrasound-assisted solid liquid extraction (UA-SLE) method was optimized though the response surface methodology (RSM), taking into account some extraction parameters. Efficient recovery of extracted phenolic compounds was achieved using a 35% water solution of choline chloride and lactic acid (molar ratio 1:2) as an extraction solvent, working at 80 °C and with a solid-to-solvent ratio of 1:25 gmL-1. The optimized conditions made it possible to recover 39% more phenolic compounds compared to a classic organic solvent.


Assuntos
Colina/química , Corylus/metabolismo , Ácido Láctico/química , Fenóis/isolamento & purificação , Solventes , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Extração Líquido-Líquido , Espectrometria de Massas , Teste de Materiais , Fenóis/análise , Polifenóis/análise , Extração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Ultrassom , Raios Ultravioleta , Viscosidade
7.
BMC Dev Biol ; 20(1): 13, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605594

RESUMO

BACKGROUND: Hazels (Corylus spp.) are economically important nut-producing species in which ovule development determines seed plumpness, one of the key parameters reflecting nut quality. microRNAs (miRNAs) play important roles in RNA silencing and the post-transcriptional regulation of gene expression. However, very little is currently known regarding the miRNAs involved in regulating ovule growth and development. RESULTS: In this study, we accordingly sought to determine the important miRNAs involved in ovule development and growth in hazel. We examined ovules at four developmental stages, namely, ovule formation (Ov1), early ovule growth (Ov2), rapid ovule growth (Ov3), and ovule maturity (Ov4). On the basis of small RNA and mRNA sequencing using the Illumina sequencing platform, we identified 970 miRNAs in hazel, of which 766 and 204 were known and novel miRNAs, respectively. In Ov1-vs-Ov2, Ov1-vs-Ov3, Ov1-vs-Ov4, Ov2-vs-Ov3, Ov2-vs-Ov4, and Ov3-vs-Ov4 paired comparisons, 471 differentially expressed microRNAs (DEmiRNAs) and their 3117 target differentially expressed messenger RNAs (DEmRNAs) formed 11,199 DEmiRNA/DEmRNA pairs, with each DEmiRNA changing the expression of an average of 6.62 target mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of all DEmRNAs revealed 29 significantly enriched KEGG pathways in the six paired comparisons, including protein export (ko03060), fatty acid elongation (ko00062), starch and sucrose metabolism (ko00500), fatty acid biosynthesis (ko00061), and amino sugar and nucleotide sugar metabolism (ko00520). Our results indicate that DEmiRNA/DEmRNA pairs showing opposite change trends were related to stress tolerance, embryo and seed development, cell proliferation, auxin transduction, and the biosynthesis of proteins, starch, and fats may participate in ovule growth and development. CONCLUSIONS: These findings contribute to a better understanding of ovule development at the level of post-transcriptional regulation, and lay the foundation for further functional analyses of hazelnut ovule growth and development.


Assuntos
Corylus/metabolismo , MicroRNAs/metabolismo , Óvulo Vegetal/metabolismo , RNA Mensageiro/metabolismo , Corylus/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Óvulo Vegetal/genética , RNA Mensageiro/genética
8.
Biochem Biophys Res Commun ; 522(1): 127-132, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31753489

RESUMO

The plant seed proteins referred to as vicilins belong to a structurally common superfamily. While some of them are reported to exhibit superoxide dismutase activity, vicilins from other sources do not possess this activity. Vicilin from Corylus avellana (HZ.1) and Solanum lycopersicum (SL80.1) were purified and subjected to structure-function analysis. The superoxide dismutase activity assays were performed to understand the functional differences between them. While SL80.1 has the superoxide dismutase activity, HZ.1 was enzymatically inactive. Crystal structure followed by mass spectrometry analysis of both the proteins revealed that while SL80.1 has bound salicylic acid, HZ.1 does not. Comparison of C-terminal binding pocket of both the structures revealed that a point mutation at residue 321 in HZ.1 (Gly→Cys) leads to obstruction in binding of salicylic acid in the pocket. Similarly, copper-binding loop of HZ.1 was reportedly found to be intact and shorter than the loops reported in SL80.1. The copper-binding loop of SL80.1 is rich in polar residues and the absence of these residues in HZ.1 copper-binding loop possibly indicates deficiency in channeling of oxygen radicals to the active center of the enzyme. Difference in the enzymatic activity of vicilin from two evolutionarily distinct sources is due to mutations in its co-factor binding pocket and copper-binding loop.


Assuntos
Cobre/química , Corylus/metabolismo , Globulinas/química , Ácido Salicílico/química , Solanum lycopersicum/metabolismo , Superóxido Dismutase/metabolismo , Sítios de Ligação , Domínio Catalítico , Mutação , Ligação Proteica , Espécies Reativas de Oxigênio , Proteínas de Armazenamento de Sementes/química , Superóxidos/metabolismo
9.
Metabolomics ; 16(5): 62, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32335734

RESUMO

INTRODUCTION: Plants respond to changes in their environments through hormonal activation of a physiological cascade that redirects metabolic resources and growth. In filberts (Corylus sp.), chelated iron promotes the growth of new shoots but the mechanism(s) are not understood. OBJECTIVES: To use untargeted metabolomics and hormonomics approaches to generate novel hypotheses for the morphoregulatory role of ferric ethylenediamine-N,N'-di-(ortho-hydroxyphenyl) acetic acid (Fe-EDDHA) in filbert shoot organogenesis in vitro. METHODS: Data were generated using previously optimized standardized untargeted metabolomics protocols with time of flight mass spectrometry. Multivariate statistical tools (principal component and partial least squares discriminant analysis) did not detect significant differences. Discovery tools Significance Analysis of Microarrays (SAM), multiple linear regression analysis, Bayesian analysis, logical algorithms, machine learning, synthetic biotransformations, targeted hormonomics, and online resources including MetaboAnalyst were used. RESULTS: Starch/sucrose metabolism and shikimate pathway metabolites were increased. Dose dependent decreases were found in polyphenol metabolism, specifically ellagic acid and its methylated derivative 3,4,3'-tri-O-methylellagic acid. Hormonomics analysis revealed significant differences in phytohormones and their conjugates. FeEDDHA treatment reduced indole-3-acetic acid, abscisic acid, salicylic acid, jasmonic acid conjugates (JA-Trp, JA-Ile, OH-JA) and dihydrozeatinglucoside in regenerating explants. Serotonin (5HT) was decreased in FeEDDHA-treated regenerating tissues while the related metabolite melatonin was increased. Eight phenolic conjugates of 5HT and eight catabolites were affected by FeEDDHA indicating that metabolism to sequester, deactivate and metabolize 5HT was induced by Fe(III). Tryptophan was metabolized through kynurenine but not anthranilate. CONCLUSION: Seven novel hypotheses were generated to guide future studies to understand the regulatory control(s) of shoot organogenesis.


Assuntos
Corylus/metabolismo , Metabolômica , Brotos de Planta/metabolismo , Corylus/química , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Análise Multivariada , Brotos de Planta/química
10.
J Sci Food Agric ; 100(2): 500-508, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31435948

RESUMO

BACKGROUND: In the present study a metabolomics-based approach was used to discriminate among different hazelnut cultivars and to trace their geographical origins. Ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-ESI/QTOF-MS) was used to profile phenolic and sterolic compounds. RESULTS: Compounds were identified against an in-house database using accurate monoisotopic mass and isotopic patterns. The screening approach was designed to discern 15 hazelnut cultivars and to discriminate among the geographical origins of six cultivars from the four main growing regions (Chile, Georgia, Italy, and Turkey). This approach allowed more than 1000 polyphenols and sterols to be annotated. The metabolomics data were elaborated with both unsupervised (hierarchical clustering) and supervised (orthogonal projections to latent structures discriminant analysis, OPLS-DA) statistics. These multivariate statistical tools allowed hazelnut samples to be discriminated, considering both 'cultivar type' and 'geographical origin'. Flavonoids (anthocyanins, flavanols and flavonols - VIP scores 1.34-1.49), phenolic acids (mainly hydroxycinnamics - VIP scores 1.35-1.55) together with cholesterol, ergosterol, and stigmasterol derivatives (VIP scores 1.34-1.49) were the best markers to discriminate samples according to geographical origin. CONCLUSIONS: This work illustrates the potential of untargeted profiling of phenolics and sterols based on UHPLC-ESI/QTOF mass spectrometry to discriminate hazelnut and support authenticity and origin. © 2019 Society of Chemical Industry.


Assuntos
Corylus/química , Nozes/química , Extratos Vegetais/química , Chile , Cromatografia Líquida de Alta Pressão , Corylus/classificação , Corylus/metabolismo , Análise Discriminante , República da Geórgia , Itália , Espectrometria de Massas , Metabolômica , Análise Multivariada , Nozes/classificação , Nozes/metabolismo , Fenóis/química , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Esteróis/química , Esteróis/metabolismo , Turquia
11.
J Proteome Res ; 18(6): 2458-2466, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31058502

RESUMO

A recent field of metabolomic applications is the analysis of mixtures, for example, in food science or the early recognition of diseases. Particularly in large-scale studies, the number of intermediate states or mixtures tends to expand significantly and in practice, a manual analysis is extremely difficult if not nearly impossible. In this study, we present a model in which the NMR spectra of mixtures are calculated based on the spectral superposition of corresponding pure samples. Instead of using real spectra, where chemical shifts may be influenced by matrix effects, the linear combination of reduced data (buckets) was applied for the calculation. Starting from a set of 262 hazelnut samples of five Eurasian countries we obtained more than 160 000 NMR spectra with mixed geographic origin. Using these as a basis we calculated assessment curves to estimate to which extent admixtures are recognized within a multivariate classification model. Subsequently the calculated data were compared with the measured spectra of tangible mixtures to validate and assess the suitability of this method. The calculated spectra are very similar to the acquired data, and the resulting deviations are on a similar scale to the errors of current metabolomic measurements. Thus, with a suitable sample basis, various different mixtures can be simulated and limitations of the model can be described. This approach reduces time and resource consumption and allows valid predictions based on calculated NMR spectra. In addition to the first example dealing with the admixtures classification of single commodity foods, this approach may also be applied to simulate metabolic progression in other areas.


Assuntos
Corylus/genética , Análise de Alimentos , Metabolômica/métodos , Algoritmos , Corylus/classificação , Corylus/metabolismo , Espectroscopia de Ressonância Magnética
12.
Anal Bioanal Chem ; 411(26): 6857-6866, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420709

RESUMO

We show an alternative way to visualize time course NMR data without the application of multivariate data analysis, based on the temporal change of the metabolome of hazelnuts after mold infestation. Fresh hazelnuts were inoculated with eight different natural mold species and the growth was studied over a period of 14 days. The data were plotted in a color-coded scheme showing metabolic changes as a function of chemical shift, which we named signal pattern plot. This plot graphically displays alteration (trend) of a respected signal over time and allows visual interpretation in a simple manner. Changes are compared with a reference sample stored under identical conditions as the infected nuts. The plot allows, at a glance, the recognition of individual landmarks specific to a sample group as well as common features of the spectra. Each sample reveals an individual signal pattern. The plot facilitates the recognition of signals that belong to biological relevant metabolites. Betaine and five signals were identified that specifically changed upon mold infestation. Graphical abstract.


Assuntos
Corylus/metabolismo , Corylus/microbiologia , Metaboloma , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Aspergillus niger/fisiologia , Betaína/análise , Betaína/metabolismo , Corylus/química , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia
13.
Planta Med ; 85(11-12): 840-855, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250412

RESUMO

Corylus avellana (hazelnut) is one of the most popular tree nuts on a worldwide basis. The main products of C. avellana are kernels, a nutritious food, with a high content of healthy lipids, contained in a hard shell. In recent years, along with the ongoing research carried out on hazelnut kernels, a growing interest has been addressed to the hazelnut byproducts including hazelnut skin, hazelnut hard shell, and hazelnut green leafy cover as well as hazelnut tree leaf. These byproducts deriving from the roasting, cracking, shelling/hulling, and harvesting processes have been found as a source of "phytochemicals" with biological activity. The aim of this review is to provide a comprehensive and critical update on the chemistry and biological activity of specialized metabolites occurring in hazelnut kernels and byproducts. Phenolics are the most abundant phytochemicals not only in the kernels, but also in other processing byproducts. Attention has been also devoted to taxane derivatives isolated from C. avellana leaves. An overview on the biological activity, mainly antioxidant, antiproliferative, and antimicrobial along with less common biological effects, has been provided, contributing to highlight C. avellana as a source of bioactive phytochemicals with the potential to exert beneficial effects on human health. Finally, analytical techniques for the quali-quantitative analysis of specialized metabolites occurring in the different parts of C. avellana have been reviewed.


Assuntos
Corylus/metabolismo , Nozes/metabolismo , Extratos Vegetais/farmacologia , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antipaína/farmacologia , Corylus/química , Humanos , Nozes/química , Extratos Vegetais/análise , Extratos Vegetais/química
14.
Anal Bioanal Chem ; 410(15): 3491-3506, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29313080

RESUMO

Within the pattern of volatiles released by food products (volatilome), potent odorants are bio-active compounds that trigger aroma perception by activating a complex array of odor receptors (ORs) in the regio olfactoria. Their informative role is fundamental to select optimal post-harvest and storage conditions and preserve food sensory quality. This study addresses the volatile metabolome from high-quality hazelnuts (Corylus avellana L.) from the Ordu region (Turkey) and Tonda Romana from Italy, and investigates its evolution throughout the production chain (post-harvest, industrial storage, roasting) to find functional correlations between technological strategies and product quality. The volatile metabolome is analyzed by headspace solid-phase microextration combined with comprehensive two-dimensional gas chromatography and mass spectrometry. Dedicated pattern recognition, based on 2D data (targeted fingerprinting), is used to mine analytical outputs, while principal component analysis (PCA), Fisher ratio, hierarchical clustering, and analysis of variance are used to find decision makers among the most informative chemicals. Low-temperature drying (18-20 °C) has a decisive effect on quality; it correlates negatively with bacteria and mold metabolic activity, nut viability, and lipid oxidation products (2-methyl-1-propanol, 3-methyl-1-butanol, 2-ethyl-1-hexanol, 2-octanol, 1-octen-3-ol, hexanal, octanal and (E)-2-heptanal). Protective atmosphere storage (99% N2-1% O2) effectively limits lipid oxidation for 9-12 months after nut harvest. The combination of optimal drying and storage preserves the aroma potential; after roasting at different shelf-lives, key odorants responsible for malty and buttery (2- and 3-methylbutanal, 2,3-butanedione and 2,3-pentanedione), earthy (methylpyrazine, 2-ethyl-5-methyl pyrazine and 3-ethyl-2,5-dimethyl pyrazine) and caramel-like and musty notes (2,5-dimethyl-4-hydroxy-3(2H)-furanone - furaneol and acetyl pyrrole) show no significant variation. Graphical abstract Comprehensive two-dimensional gas chromatography (GC × GC) coupled with mass spectrometric detection captures hazelnut volatiles signatures while advanced fingerprinting approaches based on pattern recognition enable access to a higher level of information.


Assuntos
Corylus/química , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nozes/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Aldeídos/metabolismo , Corylus/metabolismo , Qualidade dos Alimentos , Furanos/análise , Furanos/metabolismo , Metaboloma , Nozes/metabolismo , Pirazinas/análise , Pirazinas/metabolismo , Compostos Orgânicos Voláteis/metabolismo
15.
Planta ; 244(2): 347-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27072675

RESUMO

MAIN CONCLUSION: A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.


Assuntos
Ascomicetos/fisiologia , Parede Celular/metabolismo , Corylus/microbiologia , Micorrizas , Ascomicetos/enzimologia , Ascomicetos/genética , Metabolismo dos Carboidratos , Parede Celular/ultraestrutura , Corylus/metabolismo , Corylus/ultraestrutura , Perfilação da Expressão Gênica , Pectinas/análise , Pectinas/genética , Pectinas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Transcriptoma
16.
J Sci Food Agric ; 95(9): 1956-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25224327

RESUMO

BACKGROUND: Zinc is an essential element for plants and its deficiency is a widespread problem throughout the world, causing decreased yields and nutritional quality. In this study the effect of zinc fertilization on some nut traits and the nutritional composition of 'Tombul' hazelnut (Corylus avellana L.) variety cultivated in the Black Sea region of Turkey was investigated and the contribution of this nut to human nutrition determined. Trials were carried out at 'Tombul' hazelnut orchards, and zinc fertilizers were applied at 0, 0.2, 0.4, 0.8 and 1.6 kg Zn ha(-1) in three consecutive years. RESULTS: Significant differences in some nut traits and mineral composition (protein, total oil, ash, kernel percentage, empty and wrinkled nuts, copper, boron, manganese and molybdenum) were observed with zinc fertilizer applications. In terms of daily nutritional element requirements, 100 g of hazelnut provided about 44.74% phosphorus, 13.39% potassium, 19.32% calcium, 37.49% magnesium, 0.19% sodium, 51.63% iron, 25.73% zinc and 14.05% boron of the recommended daily amounts (RDAs), while copper, manganese and molybdenum contents exceeded their RDAs. CONCLUSION: In order to improve some nut traits and the mineral composition of hazelnut, 0.8 and 1.6 kg Zn ha(-1) fertilizations could be recommended in practice.


Assuntos
Corylus/química , Produtos Agrícolas/química , Fertilizantes , Qualidade dos Alimentos , Nozes/química , Zinco/metabolismo , Mar Negro , Corylus/crescimento & desenvolvimento , Corylus/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Humanos , Valor Nutritivo , Nozes/crescimento & desenvolvimento , Nozes/metabolismo , Recomendações Nutricionais , Turquia , Zinco/análise
17.
J Agric Food Chem ; 72(43): 24109-24129, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39413774

RESUMO

The brown marmorated stink bug (Halyomorpha halys) poses a significant threat to hazelnut crops by affecting kernel development and causing quality defects, reducing the market value. While previous studies have identified bitter-tasting compounds in affected kernels, the impact of stink bug feeding on the hazelnut metabolome, particularly concerning aroma precursors, remains underexplored. This study aims to map the nonvolatile metabolome and volatilome of hazelnut samples obtained by caging H. halys on different cultivars in two locations to identify markers for diagnosing stink bug damage. Using a multiomic approach involving headspace solid-phase microextraction (HS-SPME), comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS), both raw and roasted hazelnuts are analyzed, with artificial intelligence (AI) and machine learning tools employed to explore data correlations. The study finds that the hazelnut metabolome and volatilome exhibit high chemical complexity with significant classes of compounds such as aldehydes, ketones, alcohols, and terpenes identified in both raw and roasted hazelnuts. Multivariate analysis indicates that the orchard location significantly impacts the metabolome, followed by damage type, with cultivar differences being less pronounced. Partial least-squares discriminant analysis (PLS-DA) models achieve high predictive accuracy for orchard location (99%) and damage type (≈80%), with the roasted volatilome showing the highest predictive accuracy. Correlation matrices reveal significant relationships between raw hazelnut metabolites and aroma compounds in roasted samples, suggesting potential markers for stink bug damage that could guide the quality assessment and mitigation strategies. Data fusion techniques further enhance classification performance, particularly in predicting damage type, underscoring the potential of integrating multiple data sets for comprehensive quality assessment.


Assuntos
Corylus , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Corylus/química , Corylus/metabolismo , Animais , Heterópteros/metabolismo , Heterópteros/química , Heterópteros/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Microextração em Fase Sólida/métodos , Inteligência Artificial , Nozes/química , Nozes/metabolismo , Odorantes/análise
18.
Plant Physiol Biochem ; 210: 108653, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670029

RESUMO

Edible plant seeds provide a relatively inexpensive source of protein and make up a large part of nutrients for humans. Plant seeds accumulate storage proteins during seed development. Seed storage proteins act as a reserve of nutrition for seed germination and seedling growth. However, seed storage proteins may be allergenic, and the prevalence of food allergy has increased rapidly in recent years. The 11S globulins account for a significant number of known major food allergens. They are of interest to the public and the agricultural industry because of food safety concerns and the need for crop enhancement. We sought to determine the crystal structure of Cor a 9, the 11 S storage protein of hazelnut and a food allergen. The structure was refined to 1.92 Å, and the R and Rfree for the refined structure are 17.6% and 22.5%, respectively. The structure of Cor a 9 showed a hetero hexamer of an 11S seed storage protein for the first time. The hexamer was two trimers associated back-to-back. Two long alpha helixes at the C-terminal end of the acidic domain of one of the Cor a 9 isoforms lay at the trimer-trimer interface's groove. These data provided much-needed information about the allergenicity of the 11S seed proteins. The information may also facilitate a better understanding of the folding and transportation of 11S seed storage proteins.


Assuntos
Corylus , Proteínas de Armazenamento de Sementes , Corylus/química , Corylus/metabolismo , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/metabolismo , Cristalografia por Raios X , Sementes/metabolismo , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Globulinas/química , Globulinas/metabolismo , Sequência de Aminoácidos , Multimerização Proteica , Modelos Moleculares
19.
BMC Plant Biol ; 13: 152, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24093758

RESUMO

BACKGROUND: Corylus was renowned for its production of hazelnut and taxol. To understand the local adaptation of Chinese species and speed up breeding efforts in China, we analyzed the leaf transcriptome of Corylus mandshurica, which had a high tolerance to fungal infections and cold. RESULTS: A total of 12,255,030 clean pair-end reads were generated and then assembled into 37,846 Expressed Sequence Tag (EST) sequences. During functional annotation, 26,565 ESTs were annotated with Gene Ontology (GO) terms using Blast2go and 11,056 ESTs were grouped into the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using KEGG Automatic Annotation Server (KAAS). We identified 45 ESTs that were homologous to enzymes and transcription factors responsible for taxol synthesis. The most differentiated orthologs between C. mandshurica and a European congener, C. avellana, were enriched in stress tolerance to fungal resistance and cold. CONCLUSIONS: In this study, we detected a set of genes related to taxol synthesis in a taxol-producing angiosperm species for the first time and found a close relationship between most differentiated genes and different adaptations to fungal infection and cold in C. mandshurica and C. avellana. These findings provided tools to improve our understanding of local adaptation, genetic breeding and taxol production in hazelnut.


Assuntos
Corylus/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Corylus/metabolismo , Paclitaxel/metabolismo
20.
J Environ Manage ; 129: 341-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23981706

RESUMO

Our study assessed the impact of hazelnuts (Coryllus avellena L.) in land-use conversion from forest (F) to agricultural land (AL) on various attributes of soil respiration dynamics, such as soil elemental carbon (C%) content, microbial respiration, bulk density, soil pH, electrical conductivity, and seasonal variations. We developed soil C% models to compare soil C% between F and AL soils. Four field trips were conducted in the winter and summer of 2008 and the spring and fall of 2009 in the Karasu region of Turkey. During each trip, 42 sites were visited F (n = 21) and AL (n = 21). Our results showed that hazelnuts plantations in AL could reduce elemental C% by 27% (winter 2008), 16% (summer 2008), 41% (spring 2009), and 22% (fall 2009) in the four seasons studied when compared to F soils. In situ soil respiration was also reduced by 31% (spring 2008), 67% (fall 2008), 88% (spring 2009), and 79% (fall 2009) in AL soils over F soils. The percent of organic matter of AL soils was declined by 36% (winter 2008), 23% (summer 2008), 34% (spring 2009), and 26% (fall 2009) in comparison to F soils. Significant reductions in the correlation between C%-percent clay and C%-electrical conductivity were also recorded for AL soils over F soils. Furthermore, AL soils showed higher bulk density (7.4% and 7%) when compared to F soils. We also found that in situ soil respiration had significant seasonal correlations (p < 0.05) with soil pH (0.537), soil temperature, and percent clay (-0.486) in F soils (summer 2008, spring 2009). Additionally, we found that seasonal variations of four sampling seasons had a moderate impact on in situ respiration and that the differences were statistically significant, except for the winter-summer and spring-fall seasonal pairs. Linear regression C models showed significant differences for F and AL soils.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Conservação dos Recursos Naturais , Corylus/crescimento & desenvolvimento , Ecossistema , Solo/química , Agricultura , Corylus/metabolismo , Agricultura Florestal , Modelos Biológicos , Estações do Ano , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA