Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(17): 3083-3085, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985286

RESUMO

In some plants and animals, microtubules attach across the length of the chromosome in mitosis, forming a holocentromere instead of a single centromeric locus. A new study in Cell shows that in the holocentric beak sedge Rhynchospora, holocentromeres also impact genomic architecture, epigenome organization, and karyotype evolution.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Microtúbulos , Mitose , Plantas/genética
2.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
3.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730341

RESUMO

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Assuntos
Genes de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Plântula , Plântula/genética , Cyperaceae/genética , Padrões de Referência , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Reprodutibilidade dos Testes , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
4.
BMC Microbiol ; 24(1): 304, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138453

RESUMO

BACKGROUND: Ectomycorrhizal (ECM and ECM-like) structures associated with plant root systems are a challenge for scientists. The dispersion pattern of roots within the soil profile and the nutritional conditions are both favourable factors to motivate the plants to make ECM associations. RESULTS: This study discusses the colonization of mycorrhizal associations in Kobresia and Polygonum species including Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens grown naturally in cold stressed soils of Gilgit-Baltistan (high-altitude alpine Deosai plains), Hazara, Swat, Dir, and Bajaur. Sieved soil batches were exposed to +5 °C (control), -10, -20, -30, -40, -50, -125 °C for 5 h, and selected plants were sown to these soils for 10 weeks under favourable conditions for ECM colonization. Ectomycorrhizal associations were examined in the above mentioned plants. Some ECM fungi have dark mycelia that look like the mantle and Hartig net. Examples of these are Kobresia filicina, K. myosuroides, and Polygonum viviparum. Findings of this study revealed that K. myosuroides excelled in ECM root tip length, dry mass, and NH4 concentration at -125 °C. Contrarily, A. nitida demonstrated the lower values, indicated its minimum tolerance. Notably, T. repens boasted the highest nitrogen concentration (18.7 ± 1.31 mg/g), while P. sylvestris led in phosphorus (3.2 ± 0.22 mg/g). The B. pendula showed the highest potassium concentration (9.4 ± 0.66 mg/g), emphasising species-specific nutrient uptake capabilities in extreme cold conditions. The PCA analysis revealed that the parameters, e.g., NH4 in soil mix (NH4), NO3 in soil mix (NO3), phosphorus in soil in species of Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens are most accurately represented in cases of + 5 °C, -10 °C, and -20 °C temperatures. On the other hand, the parameters for ECM root tips (ECM) and Dry Mass (DM) are best described in -40 °C, -50 °C, and - 125 °C temperatures. All parameters have a strong influence on the variability of the system indicated the efficiency of ECM. The heatmap supported the nutrients positively correlated with ECM colonization with the host plants. CONCLUSION: At lower temperatures, hyphae and spores in roots were reduced, while soluble phosphorus concentrations of leaves were increased in cold stress soils. Maximum foliar nutrient concentrations were found in K. myosuroides at the lowest temperature treatments due to efficient functioning and colonization of ECM.


Assuntos
Temperatura Baixa , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Trifolium/microbiologia , Trifolium/crescimento & desenvolvimento , Solo/química , Nutrientes/metabolismo , Cyperaceae/microbiologia , Cyperaceae/crescimento & desenvolvimento , Estresse Fisiológico , Simbiose , Polygonum/microbiologia , Polygonum/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/análise
5.
Am J Bot ; 111(8): e16315, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38695147

RESUMO

PREMISE: Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS: We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS: Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS: We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.


Assuntos
Tamanho do Genoma , Genoma de Planta , Filogenia , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Cyperaceae/genética , Cyperaceae/fisiologia , Água/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia
6.
Am J Bot ; 111(4): e16311, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571288

RESUMO

PREMISE: Previous work searching for sexual dimorphism has largely relied on the comparison of trait mean vectors between sexes in dioecious plants. Whether trait scaling (i.e., the ratio of proportional changes in covarying traits) differs between sexes, along with its functional significance, remains unclear. METHODS: We measured 10 vegetative traits pertaining to carbon, water, and nutrient economics across 337 individuals (157 males and 180 females) of the diocious species Eurya japonica during the fruiting season in eastern China. Piecewise structural equation modeling was employed to reveal the scaling relationships of multiple interacting traits, and multivariate analysis of (co)variance was conducted to test for intersexual differences. RESULTS: There was no sexual dimorphism in terms of trait mean vectors across the 10 vegetative traits in E. japonica. Moreover, most relationships for covarying trait pairs (17 out of 19) exhibited common scaling slopes between sexes. However, the scaling slopes for leaf phosphorus (P) vs. nitrogen (N) differed between sexes, with 5.6- and 3.0-fold increases of P coinciding with a 10-fold increase of N in male and female plants, respectively. CONCLUSIONS: The lower ratio of proportional changes in P vs. N for females likely reflects stronger P limitation for their vegetative growth, as they require greater P investments in fruiting. Therefore, P vs. N scaling can be a key avenue allowing for sex-specific strategic optimization under unequal reproductive requirements. This study uncovers a hidden aspect of secondary sex character in dioecious plants, and highlights the use of trait scaling to understand sex-defined economic strategies.


Assuntos
Nitrogênio , Fósforo , Folhas de Planta , Reprodução , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , China , Cyperaceae/fisiologia , Cyperaceae/crescimento & desenvolvimento
7.
Antonie Van Leeuwenhoek ; 117(1): 16, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189906

RESUMO

The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 107 cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and ß-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.


Assuntos
Bacillus amyloliquefaciens , Cyperaceae , Bacillus amyloliquefaciens/genética , Rizosfera , Pradaria , Cloreto de Sódio , Peptídeo Hidrolases
8.
Pestic Biochem Physiol ; 198: 105745, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225088

RESUMO

Schoenoplectiella juncoides, a noxious sedge weed in Japanese rice paddy, has two ALS genes, and ALS-inhibitor-resistant plants have a mutation in one of the ALS genes. The authors aimed (a) to quantitate the effect of the number of mutant alleles of ALS genes on whole-plant resistance of S. juncoides and (b) to clarify a mode of inheritance of the resistance by investigating resistance levels of the progenies of a hybrid between two S. juncoides plants with Trp574Leu substitution in different ALS. A dose-response analysis on the parental lines and the F1 population suggested that the two ALS genes contribute equally to whole-plant resistant levels. A dose-response study on the F2 population indicated that it could be classified into five groups based on the sensitivities to metsulfuron-methyl. The five groups (in ascending order of resistance levels) were considered to have zero, one, two, three, and four mutant alleles. The stacking effect of mutant alleles on resistance enhancement was more significant when the number of mutant alleles was low than when it was high; in other words, each additional mutant allele stacking increases plant resistance, but the effect saturates as the number of mutant alleles increases. A chi-square test supported that the segregation ratio of the five groups corresponds to 1:4:6:4:1 of Mendelian independence for the two ALS loci.


Assuntos
Acetolactato Sintase , Cyperaceae , Herbicidas , Lixívia , Lixívia/farmacologia , Cyperaceae/genética , Herbicidas/farmacologia , Mutação , Alelos , Resistência a Herbicidas/genética , Acetolactato Sintase/genética
9.
Pestic Biochem Physiol ; 203: 105984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084788

RESUMO

This study focuses on dilution effect of target-site resistance (TSR) to acetolactate synthase (ALS) inhibitors in Schoenoplectiella juncoides, which harbors two ALS genes, ALS1 and ALS2. We assessed gene expression, enzyme activity, and whole-plant resistance profiles across four S. juncoides lines: the susceptible line, the parental resistant lines with a homozygous mutation in either ALS1 or ALS2, and the bred progeny line with homozygous mutations in both ALS1 and ALS2. Gene expression and enzyme function showed a proportional relationship that the expression ratios of ALS1 to ALS2, approximately 70:30, were consistent with the functional ratio predicted by the double-sigmoidal plateau positions observed in enzyme assays. However, at the whole-plant level, resistance did not correlate to the putative abundance of susceptible enzyme, but the parental lines showed similar resistance to each other despite different enzyme-level resistances. This suggests a non-proportional mechanism in the reflection of physiological enzymatic profiles to whole-plant resistance profiles. These findings highlight the complexity of herbicide resistance and the need for further research to understand the mechanisms that influence resistance outcomes. Understanding these relationships is essential for developing strategies to manage herbicide resistance effectively.


Assuntos
Acetolactato Sintase , Cyperaceae , Resistência a Herbicidas , Herbicidas , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Acetolactato Sintase/antagonistas & inibidores , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Cyperaceae/genética , Cyperaceae/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Genes de Plantas
10.
Planta ; 257(3): 59, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36807540

RESUMO

MAIN CONCLUSION: Sixteen Lhc genes representing 13 phylogenetic groups were identified from the full-length transcriptome of tigernut, exhibiting development regulation and diurnal fluctuation expression patterns in leaves. Nuclear encoded light-harvesting chlorophyll a/b-binding (Lhc) proteins play indispensable roles in oxygenic photosynthesis. In this study, we present the first transcriptome-based characterization of Lhc family genes in tigernut (Cyperus esculentus L.), a Cyperaceae C4 plant producing oil in underground tubers. A number of 16 Lhc genes representing 13 phylogenetic groups identified from the full-length tigernut transcriptome are equal to that found in both Carex littledalei (another Cyperaceae plant) and papaya, slightly more than 15 members present in both rice and jatropha, but relatively less than 18, 20, and 21 members present in sorghum, cassava, and Arabidopsis, respectively. Nevertheless, nearly one-vs-one orthologous relationship was observed in most groups, though some of them are no longer located in syntenic blocks and species-specific expansion was frequently found in Lhcb1. Comparative genomics analysis revealed that the loss of two groups (i.e., Lhca2 and Lhca5) in C. littledalei is species-specific, sometime after the split with tigernut, and the expansion of Lhcb1 was mainly contributed by tandem duplication as observed in most species. Interestingly, a transposed duplication, which appears to be shared by monocots, was also identified in Lhcb1. Further transcriptome profiling revealed a predominant expression pattern of most CeLhc family genes in photosynthetic tissues and enhanced transcription during leaf maturation, reflecting their key roles in light absorption. Moreover, qRT-PCR analysis revealed an apparent diurnal fluctuation expression pattern of 11 dominant CeLhc genes. These findings not only highlight species-specific evolution of Lhc genes in the Cyperaceae family as well as the monocot lineage, but also provide valuable information for further functional analysis and genetic improvement in tigernut.


Assuntos
Arabidopsis , Cyperaceae , Cyperus , Filogenia , Clorofila A , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
11.
New Phytol ; 239(2): 562-575, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36653954

RESUMO

Some rhizomatous grass and sedge species form tussocks that impact ecosystem structure and function. Despite their importance, tussock development and size controls are poorly understood due to the decadal to centennial timescales over which tussocks form. We explored mechanisms regulating tussock development and size in a ubiquitous arctic tussock sedge (Eriophorum vaginatum) using field observations and a mass balance model coupled with a tiller population model. Model-data fusion was used to quantify parameter and prediction uncertainty, determine model sensitivity, and test hypotheses on the factors regulating tussock size. The model accurately captured the dynamics of tussock development, characteristics, and size observed in the field. Tussock growth approached maximal size within several decades, which was determined by feedbacks between the mass balance of tussock root necromass and density-dependent tillering. The model also predicted that maximal tussock size was primarily regulated by tiller root productivity and necromass bulk density and less so by tiller demography. These predictions were corroborated by field observations of tussock biomass and root characteristics. The study highlights the importance of belowground processes in regulating tussock development and size and enhances our understanding of the influence of tussocks on arctic ecosystem structure and function.


Assuntos
Cyperaceae , Ecossistema , Biomassa , Regiões Árticas , Poaceae
12.
New Phytol ; 238(4): 1733-1744, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759331

RESUMO

Changes in chromosome numbers, including polyploidy and dysploidy events, play a key role in eukaryote evolution as they could expediate reproductive isolation and have the potential to foster phenotypic diversification. Deciphering the pattern of chromosome-number change within a phylogeny currently relies on probabilistic evolutionary models. All currently available models assume time homogeneity, such that the transition rates are identical throughout the phylogeny. Here, we develop heterogeneous models of chromosome-number evolution that allow multiple transition regimes to operate in distinct parts of the phylogeny. The partition of the phylogeny to distinct transition regimes may be specified by the researcher or, alternatively, identified using a sequential testing approach. Once the number and locations of shifts in the transition pattern are determined, a second search phase identifies regimes with similar transition dynamics, which could indicate on convergent evolution. Using simulations, we study the performance of the developed model to detect shifts in patterns of chromosome-number evolution and demonstrate its applicability by analyzing the evolution of chromosome numbers within the Cyperaceae plant family. The developed model extends the capabilities of probabilistic models of chromosome-number evolution and should be particularly helpful for the analyses of large phylogenies that include multiple distinct subclades.


Assuntos
Cromossomos , Cyperaceae , Filogenia , Cyperaceae/genética , Poliploidia , Plantas/genética , Evolução Molecular
13.
Mol Phylogenet Evol ; 182: 107760, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921696

RESUMO

Cyperaceae, the second largest family in the monocot order Poales, comprises >5500 species and includes the genus Eleocharis with âˆ¼ 250 species. A previous study of complete plastomes of two Eleocharis species documented extensive structural heteroplasmy, gene order changes, high frequency of dispersed repeats along with gene losses and duplications. To better understand the phylogenetic distribution of gene and intron content as well as rates and patterns of sequence evolution within and between mitochondrial and plastid genomes of Eleocharis and Cyperaceae, an additional 29 Eleocharis organelle genomes were sequenced and analyzed. Eleocharis experienced extensive gene loss in both genomes while loss of introns was mitochondria-specific. Eleocharis has higher rates of synonymous (dS) and nonsynonymous (dN) substitutions in the plastid and mitochondrion than most sampled angiosperms, and the pattern was distinct from other eudicot lineages with accelerated rates. Several clades showed higher dS and dN in mitochondrial genes than in plastid genes. Furthermore, nucleotide substitution rates of mitochondrial genes were significantly accelerated on the branch leading to Cyperaceae compared to most angiosperms. Mitochondrial genes of Cyperaceae exhibited dramatic loss of RNA editing sites and a negative correlation between RNA editing and dS values was detected among angiosperms. Mutagenic retroprocessing and dysfunction of DNA replication, repair and recombination genes are the most likely cause of striking rate accelerations and loss of edit sites and introns in Eleocharis and Cyperaceae organelle genomes.


Assuntos
Cyperaceae , Genoma Mitocondrial , Genomas de Plastídeos , Magnoliopsida , Filogenia , Genoma de Planta , Cyperaceae/genética , Evolução Molecular , Magnoliopsida/genética , Plastídeos/genética
14.
Ann Bot ; 131(1): 143-156, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226733

RESUMO

BACKGROUND AND AIMS: It is unclear how widespread polyploidy is throughout the largest holocentric plant family - the Cyperaceae. Because of the prevalence of chromosomal fusions and fissions, which affect chromosome number but not genome size, it can be impossible to distinguish if individual plants are polyploids in holocentric lineages based on chromosome count data alone. Furthermore, it is unclear how differences in genome size and ploidy levels relate to environmental correlates within holocentric lineages, such as the Cyperaceae. METHODS: We focus our analyses on tribe Schoeneae, and more specifically the southern African clade of Schoenus. We examine broad-scale patterns of genome size evolution in tribe Schoeneae and focus more intensely on determining the prevalence of polyploidy across the southern African Schoenus by inferring ploidy level with the program ChromEvol, as well as interpreting chromosome number and genome size data. We further investigate whether there are relationships between genome size/ploidy level and environmental variables across the nutrient-poor and summer-arid Cape biodiversity hotspot. KEY RESULTS: Our results show a large increase in genome size, but not chromosome number, within Schoenus compared to other species in tribe Schoeneae. Across Schoenus, there is a positive relationship between chromosome number and genome size, and our results suggest that polyploidy is a relatively common process throughout the southern African Schoenus. At the regional scale of the Cape, we show that polyploids are more often associated with drier locations that have more variation in precipitation between dry and wet months, but these results are sensitive to the classification of ploidy level. CONCLUSIONS: Polyploidy is relatively common in the southern African Schoenus, where a positive relationship is observed between chromosome number and genome size. Thus, there may be a high incidence of polyploidy in holocentric plants, whose cell division properties differ from monocentrics.


Assuntos
Cyperaceae , Cyperaceae/genética , Ploidias , Poliploidia , Cromossomos de Plantas , Biodiversidade , Genoma de Planta , Filogenia
15.
Ann Bot ; 131(5): 813-825, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815646

RESUMO

BACKGROUND AND AIMS: Satellite DNAs (satDNAs) are repetitive sequences composed by tandemly arranged, often highly homogenized units called monomers. Although satDNAs are usually fast evolving, some satDNA families can be conserved across species separated by several millions of years, probably because of their functional roles in the genomes. Tyba was the first centromere-specific satDNA described for a holocentric organism, until now being characterized for only eight species of the genus Rhynchospora Vahl. (Cyperaceae). Here, we characterized Tyba across a broad sampling of the genus, analysing and comparing its evolutionary patterns with other satDNAs. METHODS: We characterized the structure and sequence evolution of satDNAs across a robust dadated phylogeny based on Hybrid Target-Capture Sequencing (hyb-seq) of 70 species. We mined the repetitive fraction for Tyba-like satellites to compare its features with other satDNAs and to construct a Tyba-based phylogeny for the genus. KEY RESULTS: Our results show that Tyba is present in the majority of examined species of the genus, spanning four of the five major clades and maintaining intrafamily pairwise identity of 70.9% over 31 Myr. In comparison, other satellite families presented higher intrafamily pairwise identity but are phylogenetically restricted. Furthermore, Tyba sequences could be divided into 12 variants grouped into three different clade-specific subfamilies, showing evidence of traditional models of satDNA evolution, such as the concerted evolution and library models. Besides, a Tyba-based phylogeny showed high congruence with the hyb-seq topology. Our results show structural indications of a possible relationship of Tyba with nucleosomes, given its high curvature peaks over conserved regions and overall high bendability values compared with other non-centromeric satellites. CONCLUSIONS: Overall, Tyba shows a remarkable sequence conservation and phylogenetic significance across the genus Rhynchospora, which suggests that functional roles might lead to long-term stability and conservation for satDNAs in the genome.


Assuntos
Cyperaceae , DNA Satélite , DNA Satélite/genética , Cyperaceae/genética , Filogenia , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , Evolução Molecular
16.
Mol Biol Rep ; 50(5): 4729-4733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905402

RESUMO

BACKGROUND: Microsatellite primers were developed and tested to genotype several populations of Carex curvula s. l. (Cyperaceae), in order to infer the phylogeographic relationships of the populations within species and the boundaries between the two described subspecies: C. curvula subsp. curvula and C. curvula subsp. rosae. METHODS AND RESULTS: Candidate microsatellite loci were isolated based on next-generation sequencing. We tested 18 markers for polymorphism and replicability in seven C. curvula s. l. populations and identified 13 polymorphic loci with dinucleotide repeats. Genotyping results showed the total number of alleles per locus varied from four to 23 (including both infrataxa), and the observed and expected heterozygosity ranged between 0.1 to 0.82 and 0.219 to 0.711, respectively. Furthermore, the NJ tree showed a clear separation between C. curvula subsp. curvula and C. curvula subsp. rosae. CONCLUSION: The development of these highly polymorphic markers proved to be very efficient not only in delineating between the two subspecies, but also in genetic discriminating at population level within each infrataxon. They are promising tools for evolutionary studies in Cariceae section, as well as in providing knowledge on patterns of the species phylogeography.


Assuntos
Carex (Planta) , Cyperaceae , Carex (Planta)/genética , Cyperaceae/genética , Polimorfismo Genético/genética , Genótipo , Repetições de Microssatélites/genética , Loci Gênicos
17.
Plant Cell Rep ; 42(11): 1791-1808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37747544

RESUMO

KEY MESSAGE: CeOLE genes exhibit a tuber-predominant expression pattern and their mRNA/protein abundances are positively correlated with oil accumulation during tuber development. Overexpression could significantly increase the oil content of tobacco leaves. Oleosins (OLEs) are abundant structural proteins of lipid droplets (LDs) that function in LD formation and stabilization in seeds of oil crops. However, little information is available on their roles in vegetative tissues. In this study, we present the first genome-wide characterization of the oleosin family in tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high amounts of oil in underground tubers. Six members identified represent three previously defined clades (i.e. U, SL and SH) or six out of seven orthogroups (i.e. U, SL1, SL2, and SH1-3) proposed in this study. Comparative genomics analysis reveals that lineage-specific expansion of Clades SL and SH was contributed by whole-genome duplication and dispersed duplication, respectively. Moreover, presence of SL2 and SH3 in Juncus effuses implies their appearance sometime before Cyperaceae-Juncaceae divergence, whereas SH2 appears to be Cyperaceae specific. Expression analysis showed that CeOLE genes exhibit a tuber-predominant expression pattern and transcript levels are considerably more abundant than homologs in the close relative Cyperus rotundus. Moreover, CeOLE mRNA and protein abundances were shown to positively correlate with oil accumulation during tuber development. Additionally, two dominant isoforms (i.e. CeOLE2 and -5) were shown to locate in LDs as well as the endoplasmic reticulum of tobacco (Nicotiana benthamiana) leaves, and are more likely to function in homo and heteromultimers. Furthermore, overexpression of CeOLE2 and -5 in tobacco leaves could significantly increase the oil content, supporting their roles in oil accumulation. These findings provide insights into lineage-specific family evolution and putative roles of CeOLE genes in oil accumulation of vegetative tissues, which facilitate further genetic improvement for tigernut.


Assuntos
Cyperaceae , Cyperus , Cyperus/genética , Cyperus/metabolismo , Cyperaceae/genética , Cyperaceae/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Tubérculos/genética , Tubérculos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Environ Monit Assess ; 195(12): 1537, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010577

RESUMO

Understanding the spatial expansion process of salt marshes and quantifying the factors driving this expansion are crucial for the management and restoration of coastal wetlands. In this study, we aimed to illustrate the expansion process of Scirpus mariqueter using drone remote sensing and quantify its relationship with habitat quality. Our hypothesis was that landscape metrics could serve as valuable indicators for prioritizing habitat restoration efforts along the coast. We utilized drone remote sensing and adopted the simple Greenness Index to reflect the growth status of S. mariqueter. Using this index, we computed the standard deviation ellipse and growth center. To evaluate habitat quality, we developed a method based on our previous research and other relevant reports. We then conducted a quantitative analysis of the expansion process of S. mariqueter in areas with varying habitat quality. We found that S. mariqueter's optimal elevation was 3.7 m, with a range of 2.5 to 4.3 m. The threshold value for soil total nitrogen was 0.3 g/kg, and the tolerance threshold for soil salinity was 2500 ppm. These three factors, elevation, soil total nitrogen, and soil salinity, collectively influenced habitat quality, with weights of 0.68, 0.23, and 0.09, respectively, as determined through geodetector analysis. During the summer, we observed a dominance of dispersal in S. mariqueter, with the species primarily spreading to areas with increased habitat quality. Patch shapes tended to be compact and regular in this season. In contrast, during the autumn, a dominance of decline was observed, with S. mariqueter mainly distributing to areas exhibiting decreased habitat quality. Patch shapes tended to be complex and irregular in the autumn season. Eventually micro-geomorphic modification and patch shape filling methods based on UAV observations are proposed to aid wetland restoration. These findings are of utmost importance for the restoration of coastal wetlands and the enhancement of ecosystem resilience.


Assuntos
Cyperaceae , Áreas Alagadas , Ecossistema , Dispositivos Aéreos não Tripulados , Monitoramento Ambiental , Solo , Nitrogênio/análise
19.
BMC Plant Biol ; 22(1): 51, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073847

RESUMO

BACKGROUND: The Qinghai-Tibetan Plateau is experiencing rapid climate warming, which may further affect plant growth. However, little is known about the plant physiological response to climate change. RESULTS: Here, we select the Kobresia pygmaea, an important perennial Cyperaceae forage, to examine the physiological indices to temperature changes in different growing months. We determined the contents of malondialdehyde, proline, soluble sugars, superoxide dismutase, peroxidation, and catalase activity in leaves and roots of Kobresia pygmaea at 25℃, 10℃, 4℃ and 0℃ from June to September in 2020. The results showed that the content of osmotic adjustment substances in the leaves and roots of Kobresia pygmaea fluctuated greatly with experimental temperature in June and September. The superoxide dismutase activity in the leaves and roots of the four months changed significantly with temperatures. The peroxidation activity in the leaves was higher than that in the roots, while the catalase activity in leaves and roots fluctuates greatly during June, with a relative stable content in other months. Membership function analysis showed that higher temperatures were more harmful to plant leaves, and lower temperatures were more harmful to plant roots. The interaction of organs, growing season and stress temperature significantly affected the physiological indicators. CONCLUSIONS: The physiological indicators of Kobresia pygmaea can actively respond to temperature changes, and high temperature can reduce the stress resistance Kobresia pygmaea. Our findings suggest that the Kobresia pygmaea has high adaptability to climate warming in the future.


Assuntos
Cyperaceae/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , China , Temperatura Baixa , Temperatura Alta , Estações do Ano , Tibet
20.
Mol Phylogenet Evol ; 177: 107588, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35907594

RESUMO

Juncaceae is a cosmopolitan family belonging to the cyperid clade of Poales together with Cyperaceae and Thurniaceae. These families have global economic and ethnobotanical significance and are often keystone species in wetlands around the world, with a widespread cosmopolitan distribution in temperate and arctic regions in both hemispheres. Currently, Juncaceae comprises more than 474 species in eight genera: Distichia, Juncus, Luzula, Marsippospermum, Oreojuncus, Oxychloë, Patosia and Rostkovia. The phylogeny of cyperids has not been studied before in a complex view based on most sequenced species from all three families. In this study, most sequenced regions from chloroplast (rbcL, trnL, trnL-trnF) and nuclear (ITS1-5.8S-ITS2) genomes were employed from more than a thousand species of cyperids covering all infrageneric groups from their entire distributional range. We analyzed them by maximum parsimony, maximum likelihood, and Bayesian inference to revise the phylogenetic relationships in Juncaceae and Cyperaceae. Our major results include the delimitation of the most problematic paraphyletic genus Juncus, in which six new genera are recognized and proposed to recover monophyly in this group: Juncus, Verojuncus, gen. nov., Juncinella, gen. et stat. nov., Alpinojuncus, gen. nov., Australojuncus, gen. nov., Boreojuncus, gen. nov. and Agathryon, gen. et stat. nov. For these genera, a new category, Juncus supragen. et stat. nov., was established. This new classification places most groups recognized within the formal Juncus clade into natural genera that are supported by morphological characters.


Assuntos
Cyperaceae , Regiões Árticas , Sequência de Bases , Teorema de Bayes , Cyperaceae/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA