Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 26(2): 101027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955240

RESUMO

PURPOSE: In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS: Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS: Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION: Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.


Assuntos
Ataxia Cerebelar , Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Acidente Vascular Cerebral , Adulto , Humanos , Pré-Escolar , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Acetazolamida/uso terapêutico , Seguimentos , Estudos Prospectivos
2.
Mol Genet Metab ; 143(1-2): 108531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39053125

RESUMO

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Lipossomos , Manosefosfatos , Fosfotransferases (Fosfomutases) , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação/efeitos dos fármacos , Manosefosfatos/metabolismo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Mutação , Células Cultivadas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo
3.
Mol Genet Metab ; 142(2): 108487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733638

RESUMO

Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Lipossomos , Manosefosfatos , Fosfotransferases (Fosfomutases) , Humanos , Glicosilação/efeitos dos fármacos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Manosefosfatos/metabolismo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Fosfotransferases (Fosfomutases)/deficiência , Proteômica , Manose/metabolismo
4.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735264

RESUMO

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Manose , Humanos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Manose/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Fucose/metabolismo , Glicosilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Feminino , Proteômica
5.
J Inherit Metab Dis ; 46(5): 956-971, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340906

RESUMO

NANS-CDG is a congenital disorder of glycosylation (CDG) caused by biallelic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. It presents with intellectual developmental disorder (IDD), skeletal dysplasia, neurologic impairment, and gastrointestinal dysfunction. Some patients suffer progressive intellectual neurologic deterioration (PIND), emphasizing the need for a therapy. In a previous study, sialic acid supplementation in knockout nansa zebrafish partially rescued skeletal abnormalities. Here, we performed the first in-human pre- and postnatal sialic-acid study in NANS-CDG. In this open-label observational study, 5 patients with NANS-CDG (range 0-28 years) were treated with oral sialic acid for 15 months. The primary outcome was safety. Secondary outcomes were psychomotor/cognitive testing, height and weight, seizure control, bone health, gastrointestinal symptoms, and biochemical and hematological parameters. Sialic acid was well tolerated. In postnatally treated patients, there was no significant improvement. For the prenatally treated patient, psychomotor and neurologic development was better than two other genotypically identical patients (one treated postnatally, one untreated). The effect of sialic acid treatment may depend on the timing, with prenatal treatment potentially benefiting neurodevelopmental outcomes. Evidence is limited, however, and longer-term follow-up in a larger number of prenatally treated patients is required.


Assuntos
Defeitos Congênitos da Glicosilação , Ácido N-Acetilneuramínico , Animais , Humanos , Projetos Piloto , Peixe-Zebra , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Suplementos Nutricionais
6.
Am J Hum Genet ; 104(5): 835-846, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982613

RESUMO

Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.


Assuntos
Defeitos Congênitos da Glicosilação/metabolismo , Fibroblastos/metabolismo , Galactose/administração & dosagem , Fosfoglucomutase/deficiência , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Células Cultivadas , Estudos de Coortes , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Glicosilação , Humanos
7.
Ann Neurol ; 90(6): 887-900, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34652821

RESUMO

OBJECTIVE: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS: We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS: PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION: Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 20219999:n/a-n/a.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Inibidores Enzimáticos/uso terapêutico , Fosfotransferases (Fosfomutases)/deficiência , Rodanina/análogos & derivados , Sorbitol/urina , Tiazolidinas/uso terapêutico , Adolescente , Adulto , Idoso , Biomarcadores/urina , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/urina , Feminino , Glicosilação , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fosfotransferases (Fosfomutases)/urina , Prognóstico , Rodanina/uso terapêutico , Adulto Jovem
8.
J Inherit Metab Dis ; 44(6): 1441-1452, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389986

RESUMO

Fucosylation is essential for intercellular and intracellular recognition, cell-cell interaction, fertilization, and inflammatory processes. Only five types of congenital disorders of glycosylation (CDG) related to an impaired fucosylation have been described to date: FUT8-CDG, FCSK-CDG, POFUT1-CDG SLC35C1-CDG, and the only recently described GFUS-CDG. This review summarizes the clinical findings of all hitherto known 25 patients affected with those defects with regard to their pathophysiology and genotype. In addition, we describe five new patients with novel variants in the SLC35C1 gene. Furthermore, we discuss the efficacy of fucose therapy approaches within the different defects.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Fucose/uso terapêutico , Proteínas de Transporte de Monossacarídeos/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicoproteínas , Glicosilação , Humanos , Lactente , Masculino , Resultado do Tratamento , Adulto Jovem
9.
Genet Med ; 22(6): 1102-1107, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32103184

RESUMO

PURPOSE: We studied galactose supplementation in SLC35A2-congenital disorder of glycosylation (SLC35A2-CDG), caused by monoallelic pathogenic variants in SLC35A2 (Xp11.23), encoding the endoplasmic reticulum (ER) and Golgi UDP-galactose transporter. Patients present with epileptic encephalopathy, developmental disability, growth deficiency, and dysmorphism. METHODS: Ten patients with SLC35A2-CDG were supplemented with oral D-galactose for 18 weeks in escalating doses up to 1.5 g/kg/day. Outcome was assessed using the Nijmegen Pediatric CDG Rating Scale (NPCRS, ten patients) and by glycomics (eight patients). RESULTS: SLC35A2-CDG patients demonstrated improvements in overall Nijmegen Pediatric CDG Rating Scale (NPCRS) score (P = 0.008), the current clinical assessment (P = 0.007), and the system specific involvement (P = 0.042) domains. Improvements were primarily in growth and development with five patients resuming developmental progress, which included postural control, response to stimuli, and chewing and swallowing amelioration. Additionally, there were improvements in gastrointestinal symptoms and epilepsy. One patient in our study did not show any clinical improvement. Galactose supplementation improved patients' glycosylation with decreased ratios of incompletely formed to fully formed glycans (M-gal/disialo, P = 0.012 and monosialo/disialo, P = 0.017) and increased levels of a fully galactosylated N-glycan (P = 0.05). CONCLUSIONS: Oral D-galactose supplementation results in clinical and biochemical improvement in SLC35A2-CDG. Galactose supplementation may partially overcome the Golgi UDP-galactose deficiency and improves galactosylation. Oral galactose is well tolerated and shows promise as dietary therapy.


Assuntos
Defeitos Congênitos da Glicosilação , Epilepsia , Criança , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Suplementos Nutricionais , Galactose , Glicosilação , Humanos
10.
Ann Neurol ; 85(5): 740-751, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30873657

RESUMO

OBJECTIVE: Phosphomannomutase deficiency (PMM2 congenital disorder of glycosylation [PMM2-CDG]) causes cerebellar syndrome and strokelike episodes (SLEs). SLEs are also described in patients with gain-of-function mutations in the CaV2.1 channel, for which acetazolamide therapy is suggested. Impairment in N-glycosylation of CaV2.1 promotes gain-of-function effects and may participate in cerebellar syndrome in PMM2-CDG. AZATAX was designed to establish whether acetazolamide is safe and improves cerebellar syndrome in PMM2-CDG. METHODS: A clinical trial included PMM2-CDG patients, with a 6-month first-phase single acetazolamide therapy group, followed by a randomized 5-week withdrawal phase. Safety was assessed. The primary outcome measure was improvement in the International Cooperative Ataxia Rating Scale (ICARS). Other measures were the Nijmegen Pediatric CDG Rating Scale (NPCRS), a syllable repetition test (PATA test), and cognitive scores. RESULTS: Twenty-four patients (mean age = 12.3 ± 4.5 years) were included, showing no serious adverse events. Thirteen patients required dose adjustment due to low bicarbonate or asthenia. There were improvements on ICARS (34.9 ± 23.2 vs 40.7 ± 24.8, effect size = 1.48, 95% confidence interval [CI] = 4.0-7.6, p < 0.001), detected at 6 weeks in 18 patients among the 20 responders, on NPCRS (95% CI = 0.3-1.6, p = 0.013) and on the PATA test (95% CI = 0.5-3.0, p = 0.006). Acetazolamide improved prothrombin time, factor X, and antithrombin. Clinical severity, epilepsy, and lipodystrophy predicted greater response. The randomized withdrawal phase showed ICARS worsening in the withdrawal group (effect size = 1.46, 95% CI = 2.65-7.52, p = 0.001). INTERPRETATION: AZATAX is the first clinical trial of PMM2-CDG. Acetazolamide is well tolerated and effective for motor cerebellar syndrome. Its ability to prevent SLEs and its long-term effects on kidney function should be addressed in future studies. Ann Neurol 2019;85:740-751.


Assuntos
Acetazolamida/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Doenças Cerebelares/diagnóstico , Doenças Cerebelares/tratamento farmacológico , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Fosfotransferases (Fosfomutases)/deficiência , Acetazolamida/farmacologia , Adolescente , Inibidores da Anidrase Carbônica/farmacologia , Doenças Cerebelares/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/genética , Feminino , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
11.
FASEB J ; 33(2): 2669-2679, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307768

RESUMO

Congenital disorders of glycosylation are severe inherited diseases in which aberrant protein glycosylation is a hallmark. Transmembrane protein 165 (TMEM165) is a novel Golgi transmembrane protein involved in type II congenital disorders of glycosylation. Although its biologic function is still a controversial issue, we have demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi Mn2+ homeostasis defect. The goal of this study was to delineate the cellular pathway by which extracellular Mn2+ rescues N-glycosylation in TMEM165 knockout (KO) cells. We first demonstrated that after extracellular exposure, Mn2+ uptake by HEK293 cells at the plasma membrane did not rely on endocytosis but was likely done by plasma membrane transporters. Second, we showed that the secretory pathway Ca2+-ATPase 1, also known to mediate the influx of cytosolic Mn2+ into the lumen of the Golgi apparatus, is not crucial for the Mn2+-induced rescue glycosylation of lysosomal-associated membrane protein 2 (LAMP2). In contrast, our results demonstrate the involvement of cyclopiazonic acid- and thapsigargin (Tg)-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+. Interestingly, overexpression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2b isoform in TMEM165 KO cells partially rescues the observed LAMP2 glycosylation defect. Overall, this study indicates that the rescue of Golgi N-glycosylation defects in TMEM165 KO cells by extracellular Mn2+ involves the activity of Tg and cyclopiazonic acid-sensitive pumps, probably the SERCA pumps.-Houdou, M., Lebredonchel, E., Garat, A., Duvet, S., Legrand, D., Decool, V., Klein, A., Ouzzine, M., Gasnier, B., Potelle, S., Foulquier, F. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Manganês/farmacologia , Proteínas de Membrana/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia , Antiporters , Transporte Biológico , Cálcio/metabolismo , Proteínas de Transporte de Cátions , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Glicosilação , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HEK293 , Homeostase , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
12.
J Inherit Metab Dis ; 43(6): 1360-1369, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098580

RESUMO

Mannose phosphate isomerase MPI-CDG (formerly CDG-1b) is a potentially fatal inherited metabolic disease which is readily treatable with oral D-mannose. We retrospectively reviewed long-term outcomes of patients with MPI-CDG, all but one of whom were treated with D-mannose. Clinical, biological, and histological data were reviewed at diagnosis and on D-mannose treatment. Nine patients were diagnosed with MPI-CDG at a median age of 3 months. The presenting symptoms were diarrhea (n = 9), hepatomegaly (n = 9), hypoglycemia (n = 8), and protein loosing enteropathy (n = 7). All patients survived except the untreated one who died at 2 years of age. Oral D-mannose was started in eight patients at a median age of 7 months (mean 38 months), with a median follow-up on treatment of 14 years 9 months (1.5-20 years). On treatment, two patients developed severe portal hypertension, two developed venous thrombosis, and 1 displayed altered kidney function. Poor compliance with D-mannose was correlated with recurrence of diarrhea, thrombosis, and abnormal biological parameters including coagulation factors and transferrin profiles. Liver fibrosis persisted despite treatment, but two patients showed improved liver architecture during follow-up. This study highlights (i) the efficacy and safety of D-mannose treatment with a median follow-up on treatment of almost 15 years (ii) the need for life-long treatment (iii) the risk of relapse with poor compliance, (iii) the importance of portal hypertension screening (iv) the need to be aware of venous and renal complications in adulthood.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Manose-6-Fosfato Isomerase/deficiência , Manose/administração & dosagem , Manose/efeitos adversos , Administração Oral , Criança , Pré-Escolar , Feminino , Humanos , Hipertensão/etiologia , Lactente , Cirrose Hepática/patologia , Masculino , Adesão à Medicação , Estudos Retrospectivos , Transferrina/análise , Resultado do Tratamento , Trombose Venosa/etiologia
13.
J Inherit Metab Dis ; 42(1): 5-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30740725

RESUMO

Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Fosfotransferases (Fosfomutases)/deficiência , Seguimentos , Glicosilação , Humanos
14.
J Inherit Metab Dis ; 42(5): 998-1007, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31077402

RESUMO

Patients with phosphoglucomutase (PGM1) deficiency, a congenital disorder of glycosylation (CDG) suffer from multiple disease phenotypes. Midline cleft defects are present at birth. Overtime, additional clinical phenotypes, which include severe hypoglycemia, hepatopathy, growth retardation, hormonal deficiencies, hemostatic anomalies, frequently lethal, early-onset of dilated cardiomyopathy and myopathy emerge, reflecting the central roles of the enzyme in (glycogen) metabolism and glycosylation. To delineate the pathophysiology of the tissue-specific disease phenotypes, we constructed a constitutive Pgm2 (mouse ortholog of human PGM1)-knockout (KO) mouse model using CRISPR-Cas9 technology. After multiple crosses between heterozygous parents, we were unable to identify homozygous life births in 78 newborn pups (P = 1.59897E-06), suggesting an embryonic lethality phenotype in the homozygotes. Ultrasound studies of the course of pregnancy confirmed Pgm2-deficient pups succumb before E9.5. Oral galactose supplementation (9 mg/mL drinking water) did not rescue the lethality. Biochemical studies of tissues and skin fibroblasts harvested from heterozygous animals confirmed reduced Pgm2 enzyme activity and abundance, but no change in glycogen content. However, glycomics analyses in serum revealed an abnormal glycosylation pattern in the Pgm2+/- animals, similar to that seen in PGM1-CDG.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Galactose/administração & dosagem , Genes Letais , Fosfoglucomutase/deficiência , Animais , Animais Recém-Nascidos , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/enzimologia , Feminino , Glicosilação , Heterozigoto , Homozigoto , Hipoglicemia/complicações , Masculino , Camundongos , Camundongos Knockout , Doenças Musculares/complicações , Doenças Musculares/patologia , Fenótipo
15.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454904

RESUMO

A large number of mutations causing PMM2-CDG, which is the most frequent disorder of glycosylation, destabilize phosphomannomutase2. We looked for a pharmacological chaperone to cure PMM2-CDG, starting from the structure of a natural ligand of phosphomannomutase2, α-glucose-1,6-bisphosphate. The compound, ß-glucose-1,6-bisphosphate, was synthesized and characterized via 31P-NMR. ß-glucose-1,6-bisphosphate binds its target enzyme in silico. The binding induces a large conformational change that was predicted by the program PELE and validated in vitro by limited proteolysis. The ability of the compound to stabilize wild type phosphomannomutase2, as well as frequently encountered pathogenic mutants, was measured using thermal shift assay. ß-glucose-1,6-bisphosphate is relatively resistant to the enzyme that specifically hydrolyses natural esose-bisphosphates.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glucose-6-Fosfato/análogos & derivados , Mutação , Fosfotransferases (Fosfomutases)/deficiência , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Glucose-6-Fosfato/química , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Fosfotransferases (Fosfomutases)/genética , Ligação Proteica
16.
Hum Mutat ; 38(2): 160-168, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27774737

RESUMO

The congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2. This exercise identified eight compounds that increased the thermal stability of PMM2. Of these, four compounds functioned as potential PCs that significantly increased the stability of several destabilizing and oligomerization mutants and also increased PMM activity in a disease model of cells overexpressing PMM2 mutations. Structural analysis revealed one of these compounds to provide an excellent starting point for chemical optimization since it passed tests based on a number of pharmacochemical quality filters. The present results provide the first proof-of-concept of a possible treatment for PMM2-CDG and describe a promising chemical structure as a starting point for the development of new therapeutic agents for this severe orphan disease.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Alelos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Descoberta de Drogas , Ativação Enzimática , Fibroblastos/metabolismo , Genótipo , Ensaios de Triagem em Larga Escala , Humanos , Mutação com Perda de Função , Terapia de Alvo Molecular , Mutação , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/isolamento & purificação , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
17.
Mol Genet Metab ; 112(4): 275-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997537

RESUMO

We recently redefined phosphoglucomutase-1 deficiency not only as an enzyme defect, involved in normal glycogen metabolism, but also an inborn error of protein glycosylation. Phosphoglucomutase-1 is a key enzyme in glycolysis and glycogenesis by catalyzing in the bidirectional transfer of phosphate from position 1 to 6 on glucose. Glucose-1-P and UDP-glucose are closely linked to galactose metabolism. Normal PGM1 activity is important for effective glycolysis during fasting. Activated glucose and galactose are essential for normal protein glycosylation. The complex defect involving abnormal concentrations of activated sugars leads to hypoglycemia and two major phenotypic presentations, one with primary muscle involvement and the other with severe multisystem disease. The multisystem phenotype includes growth delay and malformations, like cleft palate or uvula, and liver, endocrine and heart function with possible cardiomyopathy. The patients have normal intelligence. Decreased transferrin galactosylation is a characteristic finding on mass spectrometry. Previous in vitro studies in patient fibroblasts showed an improvement of glycosylation on galactose supplements. Four patients with PGM1 deficiency have been trialed on d-galactose (compassionate use), and showed improvement of serum transferrin hypoglycosylation. There was a parallel improvement of liver function, endocrine abnormalities and a decrease in the frequency of hypoglycemic episodes. No side effects have been observed. Galactose supplementation didn't seem to resolve all clinical symptoms. Adding complex carbohydrates showed an additional clinical amelioration. Based on the available clinical data we suggest to consider the use of 0.5-1g/kg/day d-galactose and maximum 50 g/day oral galactose therapy in PGM1-CDG. The existing data on galactose therapy have to be viewed as preliminary observations. A prospective multicenter trial is ongoing to evaluate the efficacy and optimal d-galactose dose of galactose supplementation.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Galactose/uso terapêutico , Fosfoglucomutase/deficiência , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/enzimologia , Humanos , Hipoglicemia/complicações , Doenças Musculares/complicações , Doenças Musculares/patologia , Fenótipo , Fosfoglucomutase/metabolismo
18.
Front Immunol ; 15: 1350101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550576

RESUMO

Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Criança , Glicosilação , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Qualidade de Vida , Genótipo , Processamento de Proteína Pós-Traducional
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167163, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38599261

RESUMO

PMM2-CDG (MIM # 212065), the most common congenital disorder of glycosylation, is caused by the deficiency of phosphomannomutase 2 (PMM2). It is a multisystemic disease of variable severity that particularly affects the nervous system; however, its molecular pathophysiology remains poorly understood. Currently, there is no effective treatment. We performed an RNA-seq based transcriptomic study using patient-derived fibroblasts to gain insight into the mechanisms underlying the clinical symptomatology and to identify druggable targets. Systems biology methods were used to identify cellular pathways potentially affected by PMM2 deficiency, including Senescence, Bone regulation, Cell adhesion and Extracellular Matrix (ECM) and Response to cytokines. Functional validation assays using patients' fibroblasts revealed defects related to cell proliferation, cell cycle, the composition of the ECM and cell migration, and showed a potential role of the inflammatory response in the pathophysiology of the disease. Furthermore, treatment with a previously described pharmacological chaperone reverted the differential expression of some of the dysregulated genes. The results presented from transcriptomic data might serve as a platform for identifying therapeutic targets for PMM2-CDG, as well as for monitoring the effectiveness of therapeutic strategies, including pharmacological candidates and mannose-1-P, drug repurposing.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Fosfotransferases (Fosfomutases) , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Fosfotransferases (Fosfomutases)/deficiência , Fibroblastos/metabolismo , Fibroblastos/patologia , Transcriptoma , Perfilação da Expressão Gênica , Proliferação de Células/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Masculino , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos
20.
Commun Biol ; 7(1): 460, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649481

RESUMO

NGLY1 deficiency is a genetic disease caused by biallelic mutations of the Ngly1 gene. Although epileptic seizure is one of the most severe symptoms in patients with NGLY1 deficiency, preclinical studies have not been conducted due to the lack of animal models for epileptic seizures in NGLY1 deficiency. Here, we observed the behaviors of male and female Ngly1-/- mice by video monitoring and found that these mice exhibit spontaneous seizure-like behaviors. Gene expression analyses and enzyme immunoassay revealed significant decreases in oxytocin, a well-known neuropeptide, in the hypothalamus of Ngly1-/- mice. Seizure-like behaviors in Ngly1-/- mice were transiently suppressed by a single intranasal administration of oxytocin. These findings suggest the therapeutic potential of oxytocin for epileptic seizure in patients with NGLY1 deficiency and contribute to the clarification of the disease mechanism.


Assuntos
Defeitos Congênitos da Glicosilação , Ocitocina , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Convulsões , Animais , Feminino , Masculino , Camundongos , Administração Intranasal , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocitocina/administração & dosagem , Ocitocina/farmacologia , Convulsões/tratamento farmacológico , Convulsões/etiologia , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA