Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7956): 384-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020015

RESUMO

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Assuntos
Proteínas Associadas a CRISPR , Elementos de DNA Transponíveis , Deinococcus , Endonucleases , Edição de Genes , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Deinococcus/enzimologia , Deinococcus/genética , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , Endonucleases/química , Endonucleases/classificação , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Evolução Molecular , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
2.
Nature ; 616(7956): 390-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020030

RESUMO

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Deinococcus , Endodesoxirribonucleases , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , RNA Guia de Sistemas CRISPR-Cas/química , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/ultraestrutura , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/ultraestrutura , Deinococcus/enzimologia , Deinococcus/genética , Especificidade por Substrato
3.
Nature ; 599(7886): 692-696, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619744

RESUMO

Transposition has a key role in reshaping genomes of all living organisms1. Insertion sequences of IS200/IS605 and IS607 families2 are among the simplest mobile genetic elements and contain only the genes that are required for their transposition and its regulation. These elements encode tnpA transposase, which is essential for mobilization, and often carry an accessory tnpB gene, which is dispensable for transposition. Although the role of TnpA in transposon mobilization of IS200/IS605 is well documented, the function of TnpB has remained largely unknown. It had been suggested that TnpB has a role in the regulation of transposition, although no mechanism for this has been established3-5. A bioinformatic analysis indicated that TnpB might be a predecessor of the CRISPR-Cas9/Cas12 nucleases6-8. However, no biochemical activities have been ascribed to TnpB. Here we show that TnpB of Deinococcus radiodurans ISDra2 is an RNA-directed nuclease that is guided by an RNA, derived from the right-end element of a transposon, to cleave DNA next to the 5'-TTGAT transposon-associated motif. We also show that TnpB could be reprogrammed to cleave DNA target sites in human cells. Together, this study expands our understanding of transposition mechanisms by highlighting the role of TnpB in transposition, experimentally confirms that TnpB is a functional progenitor of CRISPR-Cas nucleases and establishes TnpB as a prototype of a new system for genome editing.


Assuntos
Elementos de DNA Transponíveis/genética , Deinococcus/enzimologia , Deinococcus/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , RNA/genética , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes , Células HEK293 , Humanos , Motivos de Nucleotídeos
4.
Arch Microbiol ; 206(7): 307, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884653

RESUMO

Xylanase is the most important hydrolase in the xylan hydrolase system, the main function of which is ß-1,4-endo-xylanase, which randomly cleaves xylans to xylo-oligosaccharides and xylose. Xylanase has wide ranging of applications, but there remains little research on the cold-adapted enzymes required in some low-temperature industries. Glycoside hydrolase family 8 (GH8) xylanases have been reported to have cold-adapted enzyme activity. In this study, the xylanase gene dgeoxyn was excavated from Deinococcus geothermalis through sequence alignment. The recombinant xylanase DgeoXyn encodes 403 amino acids with a theoretical molecular weight of 45.39 kDa. Structural analysis showed that DgeoXyn has a (α/α)6-barrel fold structure typical of GH8 xylanase. At the same time, it has strict substrate specificity, is only active against xylan, and its hydrolysis products include xylobiose, xylotrinose, xytetranose, xylenanose, and a small amount of xylose. DgeoXyn is most active at 70 â„ƒ and pH 6.0. It is very stable at 10, 20, and 30 â„ƒ, retaining more than 80% of its maximum enzyme activity. The enzyme activity of DgeoXyn increased by 10% after the addition of Mn2+ and decreased by 80% after the addition of Cu2+. The Km and Vmax of dgeox were 42 mg/ml and 20,000 U/mg, respectively, at a temperature of 70 â„ƒ and pH of 6.0 using 10 mg/ml beechwood xylan as the substrate. This research on DgeoXyn will provide a theoretical basis for the development and application of low-temperature xylanase.


Assuntos
Deinococcus , Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Xilanos , Deinococcus/enzimologia , Deinococcus/genética , Especificidade por Substrato , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Xilanos/metabolismo , Temperatura Baixa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Hidrólise , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Clonagem Molecular , Cinética , Peso Molecular , Dissacarídeos
5.
Cell ; 137(5): 849-59, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19490894

RESUMO

Superfamily 1B (SF1B) helicases translocate in a 5'-3' direction and are required for a range of cellular activities across all domains of life. However, structural analyses to date have focused on how SF1A helicases achieve 3'-5' movement along nucleic acids. We present crystal structures of the complex between the SF1B helicase RecD2 from Deinococcus radiodurans and ssDNA in the presence and absence of an ATP analog. These snapshots of the reaction pathway reveal a nucleotide binding-induced conformational change of the two motor domains that is broadly reminiscent of changes observed in other SF1 and SF2 helicases. Together with biochemical data, the structures point to a step size for translocation of one base per ATP hydrolyzed. Moreover, the structures also reveal a mechanism for nucleic acid translocation in the 5'-3' direction by SF1B helicases that is surprisingly different from that of 3'-5' translocation by SF1A enzymes, and explains the molecular basis of directionality.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Deinococcus/enzimologia , Trifosfato de Adenosina/análogos & derivados , Cristalografia por Raios X , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
6.
Cell ; 136(6): 1044-55, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19303848

RESUMO

Deinococcus radiodurans' extreme resistance to ionizing radiation, desiccation, and DNA-damaging chemicals involves a robust DNA repair that reassembles its shattered genome. The repair process requires diploidy and commences with an extensive exonucleolytic erosion of DNA fragments. Liberated single-stranded overhangs prime strand elongation on overlapping fragments and the elongated complementary strands reestablish chromosomal contiguity by annealing. We explored the interdependence of the DNA recombination and replication processes in the reconstitution of the D. radiodurans genome disintegrated by ionizing radiation. The priming of extensive DNA repair synthesis involves RecA and RadA proteins. DNA polymerase III is essential for the initiation of repair synthesis, whereas efficient elongation requires DNA polymerases I and III. Inactivation of both polymerases leads to degradation of DNA fragments and rapid cell death. The present in vivo characterization of key recombination and replication processes dissects the mechanism of DNA repair in heavily irradiated D. radiodurans.


Assuntos
Reparo do DNA , Deinococcus/genética , Deinococcus/efeitos da radiação , Recombinação Genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Polimerase III , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA , Deinococcus/enzimologia , Deinococcus/metabolismo , Raios gama , Genoma Bacteriano , Hidroxiureia/farmacologia , Recombinases Rec A/metabolismo
7.
Biochem Biophys Res Commun ; 539: 42-47, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421767

RESUMO

In this report, we describe a truncated Deinococcus radiodurans 1-deoxy-D-xylulose-5-phosphate synthase (DXS) protein that retains enzymatic activity, while slowing protein degradation and showing improved crystallization properties. With modern drug-design approaches relying heavily on the elucidation of atomic interactions of potential new drugs with their targets, the need for co-crystal structures with the compounds of interest is high. DXS itself is a promising drug target, as it catalyzes the first reaction in the 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway for the biosynthesis of the universal precursors of terpenes, which are essential secondary metabolites. In contrast to many bacteria and pathogens, which employ the MEP pathway, mammals use the distinct mevalonate-pathway for the biosynthesis of these precursors, which makes all enzymes of the MEP-pathway potential new targets for the development of anti-infectives. However, crystallization of DXS has proven to be challenging: while the first X-ray structures from Escherichia coli and D. radiodurans were solved in 2004, since then only two additions have been made in 2019 that were obtained under anoxic conditions. The presented site of truncation can potentially also be transferred to other homologues, opening up the possibility for the determination of crystal structures from pathogenic species, which until now could not be crystallized. This manuscript also provides a further example that truncation of a variable region of a protein can lead to improved structural data.


Assuntos
Deinococcus/enzimologia , Escherichia coli/enzimologia , Proteínas Mutantes/química , Transferases/química , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Elementos Estruturais de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência , Transferases/genética , Transferases/metabolismo
8.
Nucleic Acids Res ; 47(21): 11403-11417, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598697

RESUMO

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.


Assuntos
Deinococcus , Proteínas Repressoras/química , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Fatores de Transcrição/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dano ao DNA , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Fatores de Transcrição/genética
9.
Proc Natl Acad Sci U S A ; 115(13): 3350-3355, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531036

RESUMO

Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.


Assuntos
Deinococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Cristalografia por Raios X , Cinética , Ligantes , Fosforilação , Conformação Proteica , Especificidade por Substrato
10.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070642

RESUMO

Urate oxidase initiates the uric acid degradation pathways and is extensively used for protein drug development for gout therapy and serum uric acid diagnosis. We first present the biochemical and structural elucidation of a urate oxidase from the extremophile microorganism Deinococcus radiodurans (DrUox). From enzyme characterization, DrUox showed optimal catalytic ability at 30 °C and pH 9.0 with high stability under physiological conditions. Only the Mg2+ ion moderately elevated its activity, which indicates the characteristic of the cofactor-free urate oxidase family. Of note, DrUox is thermostable in mesophilic conditions. It retains almost 100% activity when incubated at 25 °C and 37 °C for 24 h. In this study, we characterized a thermostable urate oxidase, DrUox with high catalytic efficiency and thermal stability, which strengthens its potential for medical applications.


Assuntos
Proteínas de Bactérias , Deinococcus , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Urato Oxidase , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/uso terapêutico , Deinococcus/enzimologia , Deinococcus/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Urato Oxidase/química , Urato Oxidase/genética , Urato Oxidase/uso terapêutico
11.
J Biol Chem ; 294(33): 12405-12414, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31239351

RESUMO

1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 µm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.


Assuntos
Proteínas de Bactérias/química , Deinococcus/enzimologia , Gliceraldeído 3-Fosfato/química , Pentosefosfatos/química , Transferases/química , Cristalografia por Raios X , Domínios Proteicos
12.
J Biol Chem ; 294(1): 89-100, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409909

RESUMO

Serine peptidases of the prolyl oligopeptidase (POP) family are of substantial therapeutic importance because of their involvement in diseases such as diabetes, cancer, neurological diseases, and autoimmune disorders. Proper annotation and knowledge of substrate specificity mechanisms in this family are highly valuable. Although endopeptidase, dipeptidyl peptidase, tripeptidyl peptidase, and acylaminoacyl peptidase activities have been reported previously, here we report the first instance of carboxypeptidase activity in a POP family member. We determined the crystal structures of this carboxypeptidase, an S9C subfamily member from Deinococcus radiodurans, in its active and inactive states at 2.3-Å resolution, providing an unprecedented view of assembly and disassembly of the active site mediated by an arginine residue. We observed that this residue is poised to bind substrate in the active structure and disrupts the catalytic triad in the inactive structure. The assembly of the active site is accompanied by the ordering of gating loops, which reduces the effective size of the oligomeric pore. This prevents the entry of larger peptides and constitutes a novel mechanism for substrate screening. Furthermore, we observed structural adaptations that enable its carboxypeptidase activity, with a unique loop and two arginine residues in the active site cavity orienting the peptide substrate for catalysis. Using these structural features, we identified homologs of this enzyme in the POP family and confirmed the presence of carboxypeptidase activity in one of them. In conclusion, we have identified a new type within POP enzymes that exhibits not only unique activity but also a novel substrate-screening mechanism.


Assuntos
Proteínas de Bactérias/química , Deinococcus/enzimologia , Serina Endopeptidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Deinococcus/genética , Prolil Oligopeptidases , Estrutura Secundária de Proteína , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
13.
Mol Microbiol ; 112(3): 854-865, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162841

RESUMO

The GC-rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3'→5' dsDNA helicase. We saw that N-Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild-type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd  = 11.74 ± 1.77 nM) as compared to dsDNA (Kd  = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP-dependent helicase activity on dsDNA. Unlike wild-type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high-density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Deinococcus/enzimologia , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , RecQ Helicases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Quadruplex G , Viabilidade Microbiana/efeitos da radiação , RecQ Helicases/química , RecQ Helicases/genética , Especificidade por Substrato
14.
Biochem Biophys Res Commun ; 529(4): 869-875, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819591

RESUMO

Deinococcus radiodurans is a Gram positive bacterium the capability of which to withstand high doses of ionizing radiations is well known. Physiologically speaking, D. radiodurans is a proteolytic prokaryote able to express and secrete quite a number of proteases, and to use amino acids as an energy source. When considering this, it is surprising that little information is available on the biochemical components responsible for the uptake of peptides in D. radiodurans. Here we report on the purification and characterization of an ABC peptide transporter, isolated from D. radiodurans cells grown in tryptone-glucose-yeast extract (TGY) medium. In particular, we show here that the action of this transporter (denoted DR1571, SwissProt data bank accession number Q9RU24 UF71_DEIRA) is exerted on peptides containing at least 3 amino acids. Further, using tetra-peptides as model systems, we were able to observe that the DR1571 protein does not bind to peptides containing phenylalanine or valine, but associates with high efficiency to tetra-glycine, and with moderate affinity to tetra-peptides containing arginine or aspartate.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , Oligopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Deinococcus/genética , Ensaios Enzimáticos , Expressão Gênica , Cinética , Peso Molecular , Oligopeptídeos/química , Ligação Proteica , Especificidade por Substrato
15.
Arch Microbiol ; 202(9): 2355-2366, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31570971

RESUMO

The principal objective of this study is to determine the resistance of Deinococcus radiodurans to hydrogen peroxide (H2O2) induced oxidative stress by inhibiting its thioredoxin reductase (TrxR) antioxidant system. Treatment of D. radiodurans with different TrxR inhibitors such as ebselen, epigallocatechin gallate and auranofin displayed this organism sensitivity to H2O2 treatment in a concentration-dependent manner. We observed that D. radiodurans showed greater resistance to H2O2 treatment. Further, it has also been noticed that TrxR redox system was suppressed by TrxR inhibitors and that this response might be associated with the oxidative stress-mediated cell death in D. radiodurans. Thus, TrxR inhibitors affect the resistance of the D. radiodurans through suppression of its thioredoxin redox pathway via the inhibition of TrxR. Results from this study proved that TrxR plays an important role as an antioxidant enzyme by scavenging intracellular ROS, and thus contributing to the resistance of D. radiodurans towards oxidative stress.


Assuntos
Deinococcus/enzimologia , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase/metabolismo , Deinococcus/efeitos dos fármacos , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/genética
16.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036395

RESUMO

Deinococcus radiodurans (Dr) has one of the most robust DNA repair systems, which is capable of withstanding extreme doses of ionizing radiation and other sources of DNA damage. DrRecA, a central enzyme of recombinational DNA repair, is essential for extreme radioresistance. In the presence of ATP, DrRecA forms nucleoprotein filaments on DNA, similar to other bacterial RecA and eukaryotic DNA strand exchange proteins. However, DrRecA catalyzes DNA strand exchange in a unique reverse pathway. Here, we study the dynamics of DrRecA filaments formed on individual molecules of duplex and single-stranded DNA, and we follow conformational transitions triggered by ATP hydrolysis. Our results reveal that ATP hydrolysis promotes rapid DrRecA dissociation from duplex DNA, whereas on single-stranded DNA, DrRecA filaments interconvert between stretched and compressed conformations, which is a behavior shared by E. coli RecA and human Rad51. This indicates a high conservation of conformational switching in nucleoprotein filaments and suggests that additional factors might contribute to an inverse pathway of DrRecA strand exchange.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Deinococcus/enzimologia , Modelos Moleculares , Conformação Molecular , Recombinases Rec A/química , Imagem Individual de Molécula , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Hidrólise , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Recombinases Rec A/metabolismo , Imagem Individual de Molécula/métodos
17.
Molecules ; 25(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906359

RESUMO

Isoflavones in soybeans are well-known phytoestrogens. Soy isoflavones present in conjugated forms are converted to aglycone forms during processing and storage. Isoflavone aglycones (IFAs) of soybeans in human diets have poor solubility in water, resulting in low bioavailability and bioactivity. Enzyme-mediated glycosylation is an efficient and environmentally friendly way to modify the physicochemical properties of soy IFAs. In this study, we determined the optimal reaction conditions for Deinococcus geothermalis amylosucrase-mediated α-1,4 glycosylation of IFA-rich soybean extract to improve the bioaccessibility of IFAs. The conversion yields of soy IFAs were in decreasing order as follows: genistein > daidzein > glycitein. An enzyme quantity of 5 U and donor:acceptor ratios of 1000:1 (glycitein) and 400:1 (daidzein and genistein) resulted in high conversion yield (average 95.7%). These optimal reaction conditions for transglycosylation can be used to obtain transglycosylated IFA-rich functional ingredients from soybeans.


Assuntos
Deinococcus/enzimologia , Glucosiltransferases/metabolismo , Glycine max/química , Isoflavonas/química , Extratos Vegetais/química , beta-Glucanas/química , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Vetores Genéticos , Genisteína/química , Glucosiltransferases/genética , Glicosilação , Isoflavonas/biossíntese , Isoflavonas/isolamento & purificação , Isoflavonas/farmacocinética , Espectrometria de Massas , Fitoestrógenos/química , Extratos Vegetais/isolamento & purificação , beta-Glucanas/farmacocinética
18.
Biochemistry ; 58(14): 1837-1840, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30855131

RESUMO

Menaquinone (MK, vitamin K) is a lipid-soluble quinone that participates in the bacterial electron transport chain. In mammalian cells, vitamin K functions as an essential vitamin for the activation of several proteins involved in blood clotting and bone metabolism. MqnA is the first enzyme on the futalosine-dependent pathway to menaquinone and catalyzes the aromatization of chorismate by water loss. Here we report biochemical and structural studies of MqnA. These studies suggest that the dehydration reaction proceeds by a variant of the E1cb mechanism in which deprotonation is slower than water loss and that the enol carboxylate of the substrate is serving as the base.


Assuntos
Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Deinococcus/metabolismo , Oxo-Ácido-Liases/metabolismo , Vitamina K 2/metabolismo , Proteínas de Bactérias/química , Deinococcus/enzimologia , Concentração de Íons de Hidrogênio , Modelos Químicos , Estrutura Molecular , Peso Molecular , Oxo-Ácido-Liases/química , Prótons , Vitamina K 2/química , Água/química , Água/metabolismo
19.
Proteins ; 87(8): 679-692, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30968972

RESUMO

Peptidase E (PepE) is a nonclassical serine peptidase with a Ser-His-Glu catalytic triad. It is specific for dipeptides with an N-terminal aspartate residue (Asp-X dipeptidase activity). Its homolog from Listeria monocytogenes (PepElm) has a Ser-His-Asn "catalytic triad." Based on sequence alignment we predicted that the PepE homolog from Deinococcus radiodurans (PepEdr) would have a Ser-His-Asp "catalytic triad." We confirmed this by solving the crystal structure of PepEdr to 2.7 Å resolution. We show that PepElm and PepEdr lack the Asp-X dipeptidase activity. Our analyses suggest that absence of P1 pocket in the active site could be the main reason for this lack of typical activity. Sequence and structural data reveal that the PepE homologs can be divided into long and short PepEs based on presence or absence of a C-terminal tail which adopts a ß-hairpin conformation in the canonical PepE from Salmonella enterica. A long PepE from Bacillus subtilis with Ser-His-Asp catalytic triad exhibits Asp-X dipeptidase activity. Whereas the three long PepEs enzymatically characterized till date have been found to possess the Asp-X dipeptidase activity, the three enzymatically characterized short PepEs lack this activity irrespective of the nature of their catalytic triads. This study illuminates the structural and functional heterogeneity in the S51 family and also provides structural basis for the functional variability among PepE homologs.


Assuntos
Aminopeptidases/química , Bacillus subtilis/enzimologia , Deinococcus/enzimologia , Listeria monocytogenes/enzimologia , Salmonella enterica/enzimologia , Bacillus subtilis/química , Domínio Catalítico , Cristalografia por Raios X , Deinococcus/química , Listeria monocytogenes/química , Modelos Moleculares , Conformação Proteica , Salmonella enterica/química
20.
Proteins ; 87(3): 212-225, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536999

RESUMO

M24B peptidases cleaving Xaa-Pro bond in dipeptides are prolidases whereas those cleaving this bond in longer peptides are aminopeptidases-P. Bacteria have small aminopeptidases-P (36-39 kDa), which are diverged from canonical aminopeptidase-P of Escherichia coli (50 kDa). Structure-function studies of small aminopeptidases-P are lacking. We report crystal structures of small aminopeptidases-P from E. coli and Deinococcus radiodurans, and report substrate-specificities of these proteins and their ortholog from Mycobacterium tuberculosis. These are aminopeptidases-P, structurally close to small prolidases except for absence of dipeptide-selectivity loop. We noticed absence of this loop and conserved arginine in canonical archaeal prolidase (Maher et al., Biochemistry. 43, 2004, 2771-2783) and questioned its classification. Our enzymatic assays show that this enzyme is an aminopeptidase-P. Further, our mutagenesis studies illuminate importance of DXRY sequence motif in bacterial small aminopeptidases-P and suggest common evolutionary origin with human XPNPEP1/XPNPEP2. Our analyses reveal sequence/structural features distinguishing small aminopeptidases-P from other M24B peptidases.


Assuntos
Aminopeptidases/química , Relação Estrutura-Atividade , Sequência de Aminoácidos/genética , Aminopeptidases/classificação , Aminopeptidases/genética , Cristalografia por Raios X , Deinococcus/enzimologia , Dipeptidases/química , Dipeptídeos/química , Escherichia coli/enzimologia , Células Procarióticas/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA