RESUMO
Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes.
Assuntos
Leishmania donovani/citologia , Leishmania donovani/metabolismo , Lisossomos/metabolismo , Fagossomos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Dictyostelium/citologia , Dineínas/metabolismo , Glicoesfingolipídeos/metabolismo , Microdomínios da Membrana/metabolismo , CamundongosRESUMO
Most single animal cells have an internal vector that determines where recycling membrane is added to the cell's surface. Because of the specific molecular composition of this added membrane, a dynamic asymmetry is formed on the surface of the cell. The consequences of this dynamic asymmetry are discussed, together with what they imply for how cells move. The polarity of a single-celled embryo, such as that of the nematode Caenorhabditis elegans, is explored in a similar framework.
Assuntos
Membrana Celular/química , Endocitose , Animais , Biologia/métodos , Caenorhabditis elegans , Movimento Celular , Citoesqueleto/metabolismo , Dictyostelium , Fibroblastos/metabolismo , Células HeLa , Hemaglutininas/química , Humanos , Proteínas de Membrana/química , Proteínas/químicaRESUMO
Dyneins power microtubule motility using ring-shaped, AAA-containing motor domains. Here, we report X-ray and electron microscopy (EM) structures of yeast dynein bound to different ATP analogs, which collectively provide insight into the roles of dynein's two major ATPase sites, AAA1 and AAA3, in the conformational change mechanism. ATP binding to AAA1 triggers a cascade of conformational changes that propagate to all six AAA domains and cause a large movement of the "linker," dynein's mechanical element. In contrast to the role of AAA1 in driving motility, nucleotide transitions in AAA3 gate the transmission of conformational changes between AAA1 and the linker, suggesting that AAA3 acts as a regulatory switch. Further structural and mutational studies also uncover a role for the linker in regulating the catalytic cycle of AAA1. Together, these results reveal how dynein's two major ATP-binding sites initiate and modulate conformational changes in the motor domain during motility.
Assuntos
Trifosfato de Adenosina/análogos & derivados , Dineínas/química , Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Catálise , Cristalografia por Raios X , Dictyostelium/química , Dineínas/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/ultraestruturaRESUMO
AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOA-mTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin-regulated glucose homeostasis.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Glucose/metabolismo , Insulina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/química , Proteína rhoA de Ligação ao GTP/química , Células 3T3-L1 , Adipócitos/citologia , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Dictyostelium , Transportador de Glucose Tipo 4/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Camundongos , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismoRESUMO
Many cellular processes require large forces that are generated collectively by multiple cytoskeletal motor proteins. Understanding how motors generate force as a team is therefore fundamentally important but is poorly understood. Here, we demonstrate optical trapping at single-molecule resolution inside cells to quantify force generation by motor teams driving single phagosomes. In remarkable paradox, strong kinesins fail to work collectively, whereas weak and detachment-prone dyneins team up to generate large forces that tune linearly in strength and persistence with dynein number. Based on experimental evidence, we propose that leading dyneins in a load-carrying team take short steps, whereas trailing dyneins take larger steps. Dyneins in such a team bunch close together and therefore share load better to overcome low/intermediate loads. Up against higher load, dyneins "catch bond" tenaciously to the microtubule, but kinesins detach rapidly. Dynein therefore appears uniquely adapted to work in large teams, which may explain how this motor executes bewilderingly diverse cellular processes.
Assuntos
Transporte Biológico , Dineínas/metabolismo , Fagossomos/metabolismo , Animais , Fenômenos Biomecânicos , Química Encefálica , Linhagem Celular , Dictyostelium , Dineínas/química , Cabras , Cinesinas , Macrófagos/metabolismo , Camundongos , Microesferas , Microtúbulos/metabolismo , Pinças ÓpticasRESUMO
Localized ion fluxes at the plasma membrane provide electrochemical gradients at the cell surface that contribute to cell polarization, migration, and division. Ion transporters, local pH gradients, membrane potential, and organization are emerging as important factors in cell polarization mechanisms. The power of electrochemical effects is illustrated by the ability of exogenous electric fields to redirect polarization in cells ranging from bacteria, fungi, and amoebas to keratocytes and neurons. Electric fields normally surround cells and tissues and thus have been proposed to guide cell polarity in development, cancer, and wound healing. Recent studies on electric field responses in model systems and development of new biosensors provide new avenues to dissect molecular mechanisms. Here, we review recent advances that bring molecular understanding of how electrochemistry contributes to cell polarity in various contexts.
Assuntos
Polaridade Celular/fisiologia , Animais , Ânions/metabolismo , Cátions/metabolismo , Divisão Celular , Movimento Celular , Forma Celular , Dictyostelium/citologia , Eletroquímica , Campos Eletromagnéticos , Peixes , Fungos/citologia , Concentração de Íons de Hidrogênio , Líquido Intracelular/química , Transporte de Íons/fisiologia , Potenciais da Membrana/fisiologia , Regeneração , Eletricidade Estática , CicatrizaçãoRESUMO
Motile cells encounter microenvironments with locally heterogeneous mechanochemical composition. Individual compositional parameters, such as chemokines and extracellular matrix pore sizes, are well known to provide guidance cues for pathfinding. However, motile cells face diverse cues at the same time, raising the question of how they respond to multiple and potentially competing signals on their paths. Here, we reveal that amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical micro-environments. Using mammalian immune cells and the amoeba Dictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step polarity switch and is driven by myosin-II forces that readjust the nuclear to the cellular path. Impaired nucleokinesis distorts path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that many immune cells, amoebae, and some cancer cells utilize an amoeboid migration strategy, these results suggest that nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease.
Assuntos
Amoeba , Dictyostelium , Animais , Movimento Celular , Matriz Extracelular , MamíferosRESUMO
Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three dimensions. Here, however, we report that rapid three-dimensional (3D) dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultrathin planar illumination produced by scanned Bessel beams with super-resolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context.
Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem Celular , Linhagem Celular Tumoral , Dermatite Fototóxica , Dictyostelium/ultraestrutura , Drosophila melanogaster/citologia , Fibroblastos/ultraestrutura , Humanos , Cariotipagem/métodos , Larva/citologia , Larva/ultraestrutura , MitoseRESUMO
The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
Assuntos
Dictyostelium/citologia , Dictyostelium/metabolismo , Privação de Alimentos/fisiologia , Nutrientes/metabolismo , Enxofre/metabolismo , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/farmacologia , Antioxidantes/metabolismo , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacologia , Dictyostelium/efeitos dos fármacos , Glutationa/química , Glutationa/metabolismo , Glutationa/farmacologia , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.
Assuntos
Amoeba , Dictyostelium , Animais , Dictyostelium/microbiologia , Eucariotos , Dieta , Bactérias , Amoeba/microbiologia , Comportamento Predatório , Cadeia AlimentarRESUMO
Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid ß-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.
Assuntos
Metabolismo Energético , Transportador Equilibrativo 1 de Nucleosídeo , Adenosina/metabolismo , Adenosina/farmacologia , Caprilatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dictyostelium/metabolismo , Dictyostelium/genética , Dictyostelium/efeitos dos fármacos , Dieta Cetogênica , Gorduras na Dieta/farmacologia , Gorduras na Dieta/metabolismo , Metabolismo Energético/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacosRESUMO
Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.
Assuntos
Dictyostelium , Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Catepsina D/metabolismo , Dictyostelium/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Membrana Lisossomal/genéticaRESUMO
Little is known about eukaryotic chemorepulsion. The enzymes phosphatase and tensin homolog (PTEN) and CnrN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Dictyostelium discoideum cells require both PTEN and CnrN to induce chemorepulsion of cells away from the secreted chemorepellent protein AprA. How D. discoideum cells utilize two proteins with redundant phosphatase activities in response to AprA is unclear. Here, we show that D. discoideum cells require both PTEN and CnrN to locally inhibit Ras activation, decrease basal levels of PI(3,4,5)P3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P2 levels, decrease PI(3,4,5)P3 levels, inhibit proliferation, decrease myosin II phosphorylation and increase filopod sizes. PTEN, but not CnrN, decreases basal levels of PI(4,5)P2, and AprA requires PTEN, but not CnrN, to induce cell roundness. Together, our results suggest that CnrN and PTEN play unique roles in AprA-induced chemorepulsion.
Assuntos
Dictyostelium , PTEN Fosfo-Hidrolase , Fosfatos de Fosfatidilinositol , Proteínas de Protozoários , Dictyostelium/metabolismo , Dictyostelium/genética , Dictyostelium/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Quimiotaxia , Transdução de Sinais , Proteínas ras/metabolismoRESUMO
Development can proceed in 'fits and starts', with rapid transitions between cell states involving concerted transcriptome-wide changes in gene expression. However, it is not clear how these transitions are regulated in complex cell populations, in which cells receive multiple inputs. We address this issue using Dictyostelium cells undergoing development in their physiological niche. A continuous single cell transcriptomics time series identifies a sharp 'jump' in global gene expression marking functionally different cell states. By simultaneously imaging the physiological dynamics of transcription and signalling, we show the jump coincides with the onset of collective oscillations of cAMP. Optogenetic control of cAMP pulses shows that different jump genes respond to distinct dynamic features of signalling. Late jump gene expression changes are almost completely dependent on cAMP, whereas transcript changes at the onset of the jump require additional input. The coupling of collective signalling with gene expression is a potentially powerful strategy to drive robust cell state transitions in heterogeneous signalling environments. Based on the context of the jump, we also conclude that sharp gene expression transitions may not be sufficient for commitment.
Assuntos
Dictyostelium , Dictyostelium/genética , Transdução de Sinais/genética , Transcriptoma , Perfilação da Expressão GênicaRESUMO
Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit.
Assuntos
Dictyostelium , Aumento da Imagem , Microscopia Confocal/métodos , Razão Sinal-Ruído , Microscopia de Fluorescência , Processamento de Imagem Assistida por Computador/métodosRESUMO
The polyglutamine (polyQ) diseases are a group of nine neurodegenerative diseases caused by the expansion of a polyQ tract that results in protein aggregation. Unlike other model organisms, Dictyostelium discoideum is a proteostatic outlier, naturally encoding long polyQ tracts yet resistant to polyQ aggregation. Here we identify serine-rich chaperone protein 1 (SRCP1) as a molecular chaperone that is necessary and sufficient to suppress polyQ aggregation. SRCP1 inhibits aggregation of polyQ-expanded proteins, allowing for their degradation via the proteasome, where SRCP1 is also degraded. SRCP1's C-terminal domain is essential for its activity in cells, and peptides that mimic this domain suppress polyQ aggregation in vitro. Together our results identify a novel type of molecular chaperone and reveal how nature has dealt with the problem of polyQ aggregation.
Assuntos
Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Dictyostelium/metabolismo , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Serina/metabolismo , Ubiquitina/metabolismoRESUMO
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.
Assuntos
Amebozoários , Evolução Molecular , MicroRNAs , RNA de Protozoário , Amebozoários/classificação , Amebozoários/genética , Dictyostelium/genética , MicroRNAs/genética , Filogenia , RNA de Protozoário/genética , Sequência Conservada/genética , Interferência de RNARESUMO
Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete. In the Dictyostelium model system, the Ras-regulated formin ForG was previously shown to specifically contribute to actin assembly at the cup base. Loss of ForG is associated with a strongly impaired macroendocytosis and a 50% reduction in F-actin content at the base of phagocytic cups, in turn indicating the presence of additional factors that specifically contribute to actin formation at the base. Here, we show that ForG synergizes with the Rac-regulated formin ForB to form the bulk of linear filaments at the cup base. Consistently, combined loss of both formins virtually abolishes cup formation and leads to severe defects of macroendocytosis, emphasizing the relevance of converging Ras- and Rac-regulated formin pathways in assembly of linear filaments in the cup base, which apparently provide mechanical support to the entire structure. Remarkably, we finally show that active ForB, unlike ForG, additionally drives phagosome rocketing to aid particle internalization.
Assuntos
Fagossomos , Dictyostelium , Forminas/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais , Fagossomos/metabolismo , Actinas/metabolismoRESUMO
While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems: the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are coordinated naturally.
Assuntos
Dictyostelium , Humanos , Animais , Modelos BiológicosRESUMO
Protists are an exceptionally diverse group of mostly single-celled eukaryotes. The organization of the microtubular cytoskeleton in protists from various evolutionary lineages has different levels of sophistication, from a network of microtubules (MTs) supporting intracellular trafficking as in Dictyostelium, to complex structures such as basal bodies and cilia/flagella enabling cell motility, and lineage-specific adaptations such as the ventral disc in Giardia. MTs building these diverse structures have specific properties partly due to the presence of tubulin post-translational modifications (PTMs). Among them there are highly evolutionarily conserved PTMs: acetylation, detyrosination, (poly)glutamylation and (poly)glycylation. In some protists also less common tubulin PTMs were identified, including phosphorylation, methylation, Δ2-, Δ5- of α-tubulin, polyubiquitination, sumoylation, or S-palmitoylation. Not surprisingly, several single-celled organisms become models to study tubulin PTMs, including their effect on MT properties and discovery of the modifying enzymes. Here, we briefly summarize the current knowledge on tubulin PTMs in unicellular eukaryotes and highlight key findings in protists as model organisms.