Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.093
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(1): 90-105.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539501

RESUMO

The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mucosa Intestinal/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Músculo Liso/crescimento & desenvolvimento , Miócitos de Músculo Liso/metabolismo , Animais , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Embrião de Galinha , Embrião de Mamíferos , Feminino , Proteínas Hedgehog/metabolismo , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Transdução de Sinais/fisiologia
2.
Cell ; 175(4): 1105-1118.e17, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343898

RESUMO

Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS.


Assuntos
Montagem e Desmontagem da Cromatina , Indução Embrionária , Neurogênese , Animais , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
3.
Cell ; 174(3): 590-606.e21, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961574

RESUMO

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Córtex Cerebral/metabolismo , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Mamíferos/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/fisiologia , Células-Tronco Neurais , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios , Fator de Transcrição PAX6/metabolismo , Proteínas Repressoras , Transdução de Sinais , Serpentes/embriologia , Proteínas Roundabout
4.
Cell ; 172(4): 869-880.e19, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398116

RESUMO

The Notch signaling pathway comprises multiple ligands that are used in distinct biological contexts. In principle, different ligands could activate distinct target programs in signal-receiving cells, but it is unclear how such ligand discrimination could occur. Here, we show that cells use dynamics to discriminate signaling by the ligands Dll1 and Dll4 through the Notch1 receptor. Quantitative single-cell imaging revealed that Dll1 activates Notch1 in discrete, frequency-modulated pulses that specifically upregulate the Notch target gene Hes1. By contrast, Dll4 activates Notch1 in a sustained, amplitude-modulated manner that predominantly upregulates Hey1 and HeyL. Ectopic expression of Dll1 or Dll4 in chick neural crest produced opposite effects on myogenic differentiation, showing that ligand discrimination can occur in vivo. Finally, analysis of chimeric ligands suggests that ligand-receptor clustering underlies dynamic encoding of ligand identity. The ability of the pathway to utilize ligands as distinct communication channels has implications for diverse Notch-dependent processes.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células CHO , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Embrião de Galinha , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Proteínas de Membrana/genética , Camundongos , Receptor Notch1/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Regulação para Cima
5.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425489

RESUMO

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias , Galinhas/fisiologia , Evolução Molecular , Proteínas de Peixes , Proteínas de Homeodomínio , Rede Nervosa/fisiologia , Rajidae/fisiologia , Fatores de Transcrição , Caminhada/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiologia , Natação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cell ; 171(3): 668-682.e11, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942924

RESUMO

The periodic segmentation of the vertebrate body axis into somites, and later vertebrae, relies on a genetic oscillator (the segmentation clock) driving the rhythmic activity of signaling pathways in the presomitic mesoderm (PSM). To understand whether oscillations are an intrinsic property of individual cells or represent a population-level phenomenon, we established culture conditions for stable oscillations at the cellular level. This system was used to demonstrate that oscillations are a collective property of PSM cells that can be actively triggered in vitro by a dynamical quorum sensing signal involving Yap and Notch signaling. Manipulation of Yap-dependent mechanical cues is sufficient to predictably switch isolated PSM cells from a quiescent to an oscillatory state in vitro, a behavior reminiscent of excitability in other systems. Together, our work argues that the segmentation clock behaves as an excitable system, introducing a broader paradigm to study such dynamics in vertebrate morphogenesis.


Assuntos
Relógios Biológicos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Embrião de Galinha , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Mesoderma/metabolismo , Camundongos , Morfogênese , Fosfoproteínas/metabolismo , Percepção de Quorum , Somitos/metabolismo , Proteínas de Sinalização YAP
7.
Cell ; 161(3): 569-580, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25865482

RESUMO

We address the mechanism by which adult intestinal stem cells (ISCs) become localized to the base of each villus during embryonic development. We find that, early in gut development, proliferating progenitors expressing ISC markers are evenly distributed throughout the epithelium, in both the chick and mouse. However, as the villi form, the putative stem cells become restricted to the base of the villi. This shift in the localization is driven by mechanically influenced reciprocal signaling between the epithelium and underlying mesenchyme. Buckling forces physically distort the shape of the morphogenic field, causing local maxima of epithelial signals, in particular Shh, at the tip of each villus. This induces a suite of high-threshold response genes in the underlying mesenchyme to form a signaling center called the "villus cluster." Villus cluster signals, notably Bmp4, feed back on the overlying epithelium to ultimately restrict the stem cells to the base of each villus.


Assuntos
Células-Tronco Adultas/citologia , Intestino Delgado/citologia , Mecanotransdução Celular , Células-Tronco Adultas/metabolismo , Animais , Proteínas Aviárias/análise , Proteínas Aviárias/metabolismo , Fenômenos Biomecânicos , Embrião de Galinha , Proteínas Hedgehog/metabolismo , Intestino Delgado/embriologia , Intestino Delgado/metabolismo , Camundongos , Morfogênese , Receptores Acoplados a Proteínas G/análise , Transdução de Sinais
8.
Nature ; 631(8021): 654-662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987590

RESUMO

Large-scale cell death is commonly observed during organismal development and in human pathologies1-5. These cell death events extend over great distances to eliminate large populations of cells, raising the question of how cell death can be coordinated in space and time. One mechanism that enables long-range signal transmission is trigger waves6, but how this mechanism might be used for death events in cell populations remains unclear. Here we demonstrate that ferroptosis, an iron- and lipid-peroxidation-dependent form of cell death, can propagate across human cells over long distances (≥5 mm) at constant speeds (around 5.5 µm min-1) through trigger waves of reactive oxygen species (ROS). Chemical and genetic perturbations indicate a primary role of ROS feedback loops (Fenton reaction, NADPH oxidase signalling and glutathione synthesis) in controlling the progression of ferroptotic trigger waves. We show that introducing ferroptotic stress through suppression of cystine uptake activates these ROS feedback loops, converting cellular redox systems from being monostable to being bistable and thereby priming cell populations to become bistable media over which ROS propagate. Furthermore, we demonstrate that ferroptosis and its propagation accompany the massive, yet spatially restricted, cell death events during muscle remodelling of the embryonic avian limb, substantiating its use as a tissue-sculpting strategy during embryogenesis. Our findings highlight the role of ferroptosis in coordinating global cell death events, providing a paradigm for investigating large-scale cell death in embryonic development and human pathologies.


Assuntos
Retroalimentação Fisiológica , Ferroptose , Espécies Reativas de Oxigênio , Animais , Embrião de Galinha , Humanos , Cistina/metabolismo , Retroalimentação Fisiológica/fisiologia , Ferroptose/fisiologia , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , NADPH Oxidases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Desenvolvimento Embrionário , Extremidades/embriologia
9.
Cell ; 155(5): 1119-30, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24238961

RESUMO

Senescence is a form of cell-cycle arrest linked to tumor suppression and aging. However, it remains controversial and has not been documented in nonpathologic states. Here we describe senescence as a normal developmental mechanism found throughout the embryo, including the apical ectodermal ridge (AER) and the neural roof plate, two signaling centers in embryonic patterning. Embryonic senescent cells are nonproliferative and share features with oncogene-induced senescence (OIS), including expression of p21, p15, and mediators of the senescence-associated secretory phenotype (SASP). Interestingly, mice deficient in p21 have defects in embryonic senescence, AER maintenance, and patterning. Surprisingly, the underlying mesenchyme was identified as a source for senescence instruction in the AER, whereas the ultimate fate of these senescent cells is apoptosis and macrophage-mediated clearance. We propose that senescence is a normal programmed mechanism that plays instructive roles in development, and that OIS is an evolutionarily adapted reactivation of a developmental process.


Assuntos
Senescência Celular , Desenvolvimento Embrionário , Animais , Apoptose , Embrião de Galinha , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/imunologia , Embrião de Mamíferos/metabolismo , Extremidades/embriologia , Fibroblastos/citologia , Humanos , Camundongos , Comunicação Parácrina
10.
Nature ; 611(7935): 365-373, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323783

RESUMO

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Assuntos
Movimento Celular , Líquido Extracelular , Metástase Neoplásica , Neoplasias , Viscosidade , Animais , Embrião de Galinha , Camundongos , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Trocadores de Sódio-Hidrogênio/metabolismo , Canais de Cátion TRPV , Peixe-Zebra/metabolismo , Metástase Neoplásica/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Via de Sinalização Hippo , Esferoides Celulares/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina , Proteína rhoA de Ligação ao GTP , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pulmão/patologia
11.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223992

RESUMO

The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.


Assuntos
Padronização Corporal , Genes Homeobox , Animais , Embrião de Galinha , Humanos , Padronização Corporal/genética , Diferenciação Celular/genética , Mesoderma/metabolismo , Medula Espinal , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
12.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828852

RESUMO

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Assuntos
Animais Geneticamente Modificados , Galinhas , Proteínas Hedgehog , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Galinhas/genética , Camundongos , Evolução Biológica , Embrião de Galinha , Ulna , Regulação da Expressão Gênica no Desenvolvimento , Fíbula/metabolismo , Rádio (Anatomia)/metabolismo , Humanos , Extremidades/embriologia
13.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856078

RESUMO

Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.


Assuntos
Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Embrião de Galinha , Lagartos/genética , Lagartos/embriologia , Desenvolvimento Embrionário/genética , Transcriptoma/genética , Citometria de Fluxo/métodos , Vertebrados/genética , Separação Celular/métodos , Galinhas , Análise de Sequência de RNA/métodos
14.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828854

RESUMO

The neural plate border (NPB) of vertebrate embryos is segregated from the neural plate (NP) and epidermal regions, and comprises an intermingled group of progenitors with multiple fate potential. Recent studies have shown that, during the gastrula stage, TFAP2A acts as a pioneer factor in remodeling the epigenetic landscape required to activate components of the NPB induction program. Here, we show that chick Tfap2a has two highly conserved binding sites for miR-137, and both display a reciprocal expression pattern at the NPB and NP, respectively. In addition, ectopic miR-137 expression reduced TFAP2A, whereas its functional inhibition expanded their territorial distribution overlapping with PAX7. Furthermore, we demonstrate that loss of the de novo DNA methyltransferase DNMT3A expanded miR-137 expression to the NPB. Bisulfite sequencing revealed a markedly elevated presence of non-canonical CpH methylation within the miR-137 promoter region when comparing NPB and NP samples. Our findings show that miR-137 contributes to the robustness of NPB territorial restriction in vertebrate development.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Placa Neural , Fator de Transcrição AP-2 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Embrião de Galinha , Metilação de DNA/genética , Placa Neural/metabolismo , Placa Neural/embriologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/metabolismo , Regiões Promotoras Genéticas/genética , Sítios de Ligação
15.
PLoS Biol ; 22(5): e3002636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743770

RESUMO

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogeneous 2D field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating nonprotein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found 7 of the 12 investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation. Interestingly, inhibition of gap junctional intercellular communication (GJIC) in the ex vivo skin explant culture allowed the sequential emergence of new feather buds at specific spatial locations relative to the existing primary buds. The results suggest that GJIC may facilitate the propagation of long-distance inhibitory signals. Thus, inhibition of GJs may stimulate Turing-type periodic feather pattern formation during chick skin development, and the removal of GJ activity would enable the emergence of new feather buds if the local environment were competent and the threshold to form buds was reached. We further propose Turing-based computational simulations that can predict the sequential appearance of these ectopic buds. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.


Assuntos
Comunicação Celular , Plumas , Junções Comunicantes , Animais , Junções Comunicantes/metabolismo , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Embrião de Galinha , Conexinas/metabolismo , Conexinas/genética , Padronização Corporal/fisiologia , Galinhas , Pele/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
16.
Cell ; 149(5): 1084-97, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632972

RESUMO

Neural-tube closure is a critical step of embryogenesis, and its failure causes serious birth defects. Coordination of two morphogenetic processes--convergent extension and neural-plate apical constriction--ensures the complete closure of the neural tube. We now provide evidence that planar cell polarity (PCP) signaling directly links these two processes. In the bending neural plates, we find that a PCP-regulating cadherin, Celsr1, is concentrated in adherens junctions (AJs) oriented toward the mediolateral axes of the plates. At these AJs, Celsr1 cooperates with Dishevelled, DAAM1, and the PDZ-RhoGEF to upregulate Rho kinase, causing their actomyosin-dependent contraction in a planar-polarized manner. This planar-polarized contraction promotes simultaneous apical constriction and midline convergence of neuroepithelial cells. Together our findings demonstrate that PCP signals confer anisotropic contractility on the AJs, producing cellular forces that promote the polarized bending of the neural plate.


Assuntos
Polaridade Celular , Embrião de Galinha/metabolismo , Morfogênese , Tubo Neural/metabolismo , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Camundongos , Placa Neural/metabolismo
17.
Cell ; 148(3): 568-82, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304922

RESUMO

Growing axons encounter multiple guidance cues, but it is unclear how separate signals are resolved and integrated into coherent instructions for growth cone navigation. We report that glycosylphosphatidylinositol (GPI)-anchored ephrin-As function as "reverse" signaling receptors for motor axons when contacted by transmembrane EphAs present in the dorsal limb. Ephrin-A receptors are thought to depend on transmembrane coreceptors for transmitting signals intracellularly. We show that the receptor tyrosine kinase Ret is required for motor axon attraction mediated by ephrin-A reverse signaling. Ret also mediates GPI-anchored GFRα1 signaling in response to GDNF, a diffusible chemoattractant in the limb, indicating that Ret is a multifunctional coreceptor for guidance molecules. Axons respond synergistically to coactivation by GDNF and EphA ligands, and these cooperative interactions are gated by GFRα1 levels. Our studies uncover a hierarchical GPI-receptor signaling network that is constructed from combinatorial components and integrated through Ret using ligand coincidence detection.


Assuntos
Axônios/metabolismo , Efrinas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Embrião de Galinha , Embrião de Mamíferos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Neurônios Motores/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Proc Natl Acad Sci U S A ; 121(28): e2310992121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968105

RESUMO

Tissue buckling is an increasingly appreciated mode of morphogenesis in the embryo, but it is often unclear how geometric and material parameters are molecularly determined in native developmental contexts to generate diverse functional patterns. Here, we study the link between differential mechanical properties and the morphogenesis of distinct anteroposterior compartments in the intestinal tract-the esophagus, small intestine, and large intestine. These regions originate from a simple, common tube but adopt unique forms. Using measured data from the developing chick gut coupled with a minimal theory and simulations of differential growth, we investigate divergent lumen morphologies along the entire early gut and demonstrate that spatiotemporal geometries, moduli, and growth rates control the segment-specific patterns of mucosal buckling. Primary buckling into wrinkles, folds, and creases along the gut, as well as secondary buckling phenomena, including period-doubling in the foregut and multiscale creasing-wrinkling in the hindgut, are captured and well explained by mechanical models. This study advances our existing knowledge of how identity leads to form in these regions, laying the foundation for future work uncovering the relationship between molecules and mechanics in gut morphological regionalization.


Assuntos
Morfogênese , Animais , Embrião de Galinha , Morfogênese/fisiologia , Fenômenos Biomecânicos , Galinhas , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/anatomia & histologia , Modelos Biológicos , Intestinos/fisiologia , Intestinos/embriologia
19.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070753

RESUMO

Developmental morphogenesis is driven by tissue stresses acting on tissue rheology. Direct measurements of forces in small tissues (100 µm-1 mm) in situ, such as in early embryos, require high spatial precision and minimal invasiveness. Here, we introduce a control-based approach, tissue force microscopy (TiFM), that integrates a mechanical cantilever probe and live imaging with closed-loop feedback control of mechanical loading in early chicken embryos. By testing previously qualitatively characterized force-producing tissues in the elongating body axis, we show that TiFM quantitatively captures stress dynamics with high sensitivity. TiFM also provides the means to apply stable, minimally invasive and physiologically relevant loads to drive tissue deformation and to follow the resulting morphogenetic progression associated with large-scale cell movements. Together, TiFM allows us to control tissue force measurement and manipulation in small developing embryos, and promises to contribute to the quantitative understanding of complex multi-tissue mechanics during development.


Assuntos
Galinhas , Fenômenos Mecânicos , Animais , Embrião de Galinha , Morfogênese/fisiologia
20.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665168

RESUMO

Chicken embryos are a powerful and widely used animal model in developmental biology studies. Since the development of CRISPR technology, gene-edited chickens have been generated by transferring primordial germ cells (PGCs) into recipients after genetic modifications. However, low inheritance caused by competition between host germ cells and the transferred cells is a common complication and greatly reduces production efficiency. Here, we generated a gene-edited chicken, in which germ cells can be ablated in a drug-dependent manner, as recipients for gene-edited PGC transfer. We used the nitroreductase/metronidazole (NTR/Mtz) system for cell ablation, in which nitroreductase produces cytotoxic alkylating agents from administered metronidazole, causing cell apoptosis. The chicken Vasa homolog (CVH) gene locus was used to drive the expression of the nitroreductase gene in a germ cell-specific manner. In addition, a fluorescent protein gene, mCherry, was also placed in the CVH locus to visualize the PGCs. We named this system 'germ cell-specific autonomous removal induction' (gSAMURAI). gSAMURAI chickens will be an ideal recipient to produce offspring derived from transplanted exogenous germ cells.


Assuntos
Galinhas , Metronidazol , Embrião de Galinha , Animais , Galinhas/genética , Células Germinativas/metabolismo , Nitrorredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA