Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7941): 739-747, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517598

RESUMO

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Assuntos
Eixo Encéfalo-Intestino , Dopamina , Exercício Físico , Microbioma Gastrointestinal , Motivação , Corrida , Animais , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Dopamina/metabolismo , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Células Receptoras Sensoriais/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Microbioma Gastrointestinal/fisiologia , Exercício Físico/fisiologia , Exercício Físico/psicologia , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/psicologia , Modelos Animais , Humanos , Estriado Ventral/citologia , Estriado Ventral/metabolismo , Corrida/fisiologia , Corrida/psicologia , Recompensa , Individualidade
2.
Nat Chem Biol ; 15(5): 453-462, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911178

RESUMO

Phenotypic screening has identified small-molecule modulators of aging, but the mechanism of compound action often remains opaque due to the complexities of mapping protein targets in whole organisms. Here, we combine a library of covalent inhibitors with activity-based protein profiling to coordinately discover bioactive compounds and protein targets that extend lifespan in Caenorhabditis elegans. We identify JZL184-an inhibitor of the mammalian endocannabinoid (eCB) hydrolase monoacylglycerol lipase (MAGL or MGLL)-as a potent inducer of longevity, a result that was initially perplexing as C. elegans does not possess an MAGL ortholog. We instead identify FAAH-4 as a principal target of JZL184 and show that this enzyme, despite lacking homology with MAGL, performs the equivalent metabolic function of degrading eCB-related monoacylglycerides in C. elegans. Small-molecule phenotypic screening thus illuminates pure pharmacological connections marking convergent metabolic functions in distantly related organisms, implicating the FAAH-4/monoacylglyceride pathway as a regulator of lifespan in C. elegans.


Assuntos
Benzodioxóis/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Longevidade/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Benzodioxóis/química , Caenorhabditis elegans/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/química , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperidinas/química
3.
Exp Cell Res ; 389(1): 111881, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006556

RESUMO

Human adipose tissue includes large quantities of mesenchymal stromal cells (atMSCs), which represent an abundant cell source for therapeutic applications in the field of regenerative medicine. Adipose tissue secrets various soluble factors including endocannabinoids, and atMSCs express the cannabinoid receptors CB1 and CB2. This indicates that adipose tissue possesses an endocannabinoid system (ECS). The ECS is also ascribed great significance for wound repair, e.g. by modulating inflammation. However, the exact effects of CB1/CB2 activation in human atMSCs have not been investigated, yet. In the present study, we stimulated human atMSCs with increasing concentrations (1-30 µM) of the unspecific cannabinoid receptor ligand WIN55,212-2 and the specific CB2 agonist JWH-133, either alone or co-applied with the receptor antagonist Rimonabant (CB1) or AM 630 (CB2). We investigated the effects on metabolic activity, cell number, differentiation and cytokine release, which are important processes during tissue regeneration. WIN decreased metabolic activity and cell number, which was reversed by Rimonabant. This suggests a CB1 dependent mechanism, whereas the number of atMSCs was increased after CB2 ligation. WIN and JWH increased the release of VEGF, TGF-ß1 and HGF. Adipogenesis was enhanced by WIN, which could be reversed by blocking CB1. There was no effect on osteogenesis, and only WIN increased chondrogenic differentiation. Our results indicate that definite activation of the cannabinoid receptors exerted different effects in atMSCs, which could be of specific value in cell-based therapy for wound regeneration.


Assuntos
Tecido Adiposo/citologia , Autorrenovação Celular , Células-Tronco Mesenquimais/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Regeneração , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/agonistas , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/farmacologia , Humanos , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Cultura Primária de Células , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Rimonabanto/farmacologia
4.
Acta Neuropsychiatr ; 33(4): 206-210, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33818338

RESUMO

OBJECTIVE: The aim of this study was to test the hypothesis that synthesis of nitric oxide (NO) and activation of CB1 receptors have opposite effects in a behavioural animal model of panic and anxiety. METHODS: To test the hypothesis, male Wistar rats were exposed to the elevated T-maze (ETM) model under the following treatments: L-Arginine (L-Arg) was administered before treatment with WIN55,212-2, a CB1 receptor agonist; AM251, a CB1 antagonist, was administered before treatment with L-Arg. All treatments were by intraperitoneal route. RESULTS: The CB1 receptor agonist, WIN55,212-2 (1 mg/kg), induced an anxiolytic-like effect, which was prevented by pretreatment with an ineffective dose of L-Arg (1 mg/kg). Administration of AM251 (1 mg/kg), a CB1 antagonist before treatment with L-Arg (1 mg/kg) did not produce anxiogenic-like responses. CONCLUSION: Altogether, this study suggests that the anxiolytic-like effect of cannabinoids may occur through modulation of NO signalling.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Pânico/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Óxido Nítrico , Piperidinas , Pirazóis , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores
5.
J Neurochem ; 152(1): 92-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571215

RESUMO

It is thought that endogenous cannabinoids have a role in the analgesia induced by specific forms of stress. We examined if the role of endogenous cannabinoids is also dependent upon the mode of nociception, and whether this could be altered by drugs which block their enzymatic degradation. In C57BL/6 mice, restraint stress produced analgesia in the hot-plate and plantar tests, two thermal pain assays that engage distinct supraspinal and spinal nociceptive pathways. Stress-induced analgesia in the hot-plate test was abolished by pre-treatment with the opioid receptor antagonist naltrexone but was unaffected by the cannabinoid receptor antagonist 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM281). By contrast, stress-induced analgesia in the plantar test was abolished by pre-treatment with naltrexone plus AM281, but not by either antagonist individually. Remarkably, inhibiting the breakdown of endocannabinoids, with the dual fatty acid amide hydrolase and monoacylglycerol lipase inhibitor JZL195, rescued stress-induced analgesia in the hotplate test when endogenous opioid signalling was blocked by naltrexone. Furthermore, JZL195 recruited analgesia induced by sub-threshold restraint stress in both thermal pain assays. These findings indicate the role of endocannabinoids in stress-induced analgesia differs with the type of thermal pain behaviour. However, by inhibiting their breakdown, endocannabinoids can be recruited to substitute for endogenous opioid signalling when their activity is blocked, indicating a degree of redundancy between opioid and cannabinoid systems. Together these data suggest targeting endocannabinoid breakdown could provide an alternative, or adjuvant to mainstream analgesics such as opioids.


Assuntos
Analgesia , Endocanabinoides/fisiologia , Temperatura Alta , Nociceptividade/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Endocanabinoides/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Restrição Física
6.
Neurochem Res ; 45(1): 100-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31254249

RESUMO

Astrocytes are highly dynamic cells that modulate synaptic transmission within a temporal domain of seconds to minutes in physiological contexts such as Long-Term Potentiation (LTP) and Heterosynaptic Depression (HSD). Recent studies have revealed that astrocytes also modulate a faster form of synaptic activity (milliseconds to seconds) known as Transient Heterosynaptic Depression (tHSD). However, the mechanism underlying astrocytic modulation of tHSD is not fully understood. Are the traditional gliotransmitters ATP or glutamate released via hemichannels/vesicles or are other, yet, unexplored pathways involved? Using various approaches to manipulate astrocytes, including the Krebs cycle inhibitor fluoroacetate, connexin 43/30 double knockout mice (hemichannels), and inositol triphosphate type-2 receptor knockout mice, we confirmed early reports demonstrating that astrocytes are critical for tHSD. We also confirmed the importance of group II metabotropic glutamate receptors (mGluRs) in astrocytic modulation of tHSD using a group II agonist. Using dominant negative SNARE mice, which have disrupted glial vesicle function, we also found that vesicular release of gliotransmitters and activation of adenosine A1 receptors are not required for tHSD. As astrocytes can release lipids upon receptor stimulation, we asked if astrocyte-derived endocannabinoids are involved in tHSD. Interestingly, a cannabinoid receptor 1 (CB1R) antagonist blocked and an inhibitor of the endogenous endocannabinoid 2-arachidonyl glycerol (2-AG) degradation potentiates tHSD in hippocampal slices. Taken together, this study provides the first evidence for group II mGluR-mediated astrocytic endocannabinoids in transiently suppressing presynaptic neurotransmitter release associated with the phenomenon of tHSD.


Assuntos
Astrócitos/metabolismo , Endocanabinoides/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/farmacologia , Pirazóis/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
7.
Alcohol Clin Exp Res ; 44(11): 2158-2165, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32944989

RESUMO

BACKGROUND: Ethanol (EtOH) self-administration is particularly sensitive to the modulation of CB1 signaling in the nucleus accumbens (NAc) shell, and EtOH consumption increases extracellular levels of the endogenous cannabinoid CB1 receptor agonist 2-arachidonoyl glycerol (2-AG) in this brain region. Stimulation of CB1 receptor with agonists increases EtOH consumption, suggesting that EtOH-induced increases in 2-AG might sustain motivation for EtOH intake. METHODS: In order to further explore this hypothesis, we analyzed the alterations in operant EtOH self-administration induced by intra-NAc shell infusions of 2-AG itself, the CB1 inverse agonist SR141716A, the 2-AG clearance inhibitor URB602, anandamide, and the cyclooxygenase-2 (COX-2) inhibitor nimesulide. RESULTS: Surprisingly, self-administration of 10% EtOH was dose-dependently reduced by either intra-NAc shell SR141716A or 2-AG infusions. Similar effects were found by intra-NAc shell infusions of URB602, suggesting again a role for accumbal 2-AG on the modulation of EtOH intake. Intra-NAc shell anandamide did not alter EtOH self-administration, pointing to a specific role for 2-AG in the modulation of EtOH self-administration. Finally, the inhibitory effect of intra-NAc shell 2-AG on EtOH intake was significantly reversed by pretreatment with nimesulide, suggesting that oxidative metabolites of 2-AG might mediate these inhibitory effects on operant self-administration. CONCLUSIONS: We propose that 2-AG signaling in the NAc exerts an inhibitory influence on EtOH consumption through a non-CB1 receptor mechanism involving the COX-2 pathway.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Ácidos Araquidônicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides/antagonistas & inibidores , Glicerídeos/antagonistas & inibidores , Masculino , Núcleo Accumbens/fisiologia , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/farmacologia , Autoadministração , Sulfonamidas/farmacologia
8.
Adv Exp Med Biol ; 1274: 177-201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894511

RESUMO

Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.


Assuntos
Endocanabinoides/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Canabinoides/antagonistas & inibidores , Canabinoides/metabolismo , Cannabis/química , Dronabinol/antagonistas & inibidores , Dronabinol/metabolismo , Endocanabinoides/antagonistas & inibidores , Humanos
9.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233525

RESUMO

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/biossíntese , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neurônios/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/isolamento & purificação , Bitionol/farmacologia , Isótopos de Carbono , Linhagem Celular Tumoral , Cromatografia Líquida , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/isolamento & purificação , Etanolaminas/antagonistas & inibidores , Etanolaminas/isolamento & purificação , Hexaclorofeno/farmacologia , Cinética , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Plasmalogênios/antagonistas & inibidores , Plasmalogênios/biossíntese , Plasmalogênios/isolamento & purificação , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Alcamidas Poli-Insaturadas/isolamento & purificação , Espectrometria de Massas em Tandem
10.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023013

RESUMO

BACKGROUND: Cannabinoids induce biphasic effects on memory depending on stress levels. We previously demonstrated that different stress intensities, experienced soon after encoding, impaired rat short-term recognition memory in a time-of-day-dependent manner, and that boosting endocannabinoid anandamide (AEA) levels restored memory performance. Here, we examined if two different stress intensities and time-of-day alter hippocampal endocannabinoid tone, and whether these changes modulate short-term memory. METHODS: Male Sprague-Dawley rats were subjected to an object recognition task and exposed, at two different times of the day (i.e., morning or afternoon), to low or high stress conditions, immediately after encoding. Memory retention was assessed 1 hr later. Hippocampal AEA and 2-arachidonoyl glycerol (2-AG) content and the activity of their primary degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), were measured soon after testing. RESULTS: Consistent with our previous findings, low stress impaired 1-hr memory performance only in the morning, whereas exposure to high stress impaired memory independently of testing time. Stress exposure decreased AEA levels independently of memory alterations. Interestingly, exposure to high stress decreased 2-AG content and, accordingly, increased MAGL activity, selectively in the afternoon. Thus, to further evaluate 2-AG's role in the modulation of short-term recognition memory, rats were given bilateral intra-hippocampal injections of the 2-AG hydrolysis inhibitor KML29 immediately after training, then subjected to low or high stress conditions and tested 1 hr later. CONCLUSIONS: KML29 abolished the time-of-day-dependent impairing effects of stress on short-term memory, ameliorating short-term recognition memory performance.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Hipocampo/metabolismo , Memória de Curto Prazo/fisiologia , Amidoidrolases/genética , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/genética , Benzodioxóis/farmacologia , Emoções/fisiologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/genética , Glicerídeos/antagonistas & inibidores , Glicerídeos/genética , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Monoacilglicerol Lipases/genética , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética
11.
Exp Dermatol ; 28(9): 1058-1065, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31350927

RESUMO

Endocannabinoids (ECs) are important regulators of cell signalling. Cannabinoid receptors are involved in keratinocyte proliferation/differentiation. Elevation of the endogenous cannabinoid tone leads to strong anti-inflammatory effects. Here, we explored the influence of endocannabinoid system (ECS) modulators on skin permeability barrier repair, epidermal proliferation, differentiation and inflammation in hairless mice. We used WOBE440, a selective fatty acid amide hydrolase (FAAH) inhibitor, WOL067-531, an inhibitor of endocannabinoid reuptake with no relevant FAAH activity, which both signal via cannabinoid receptor-1 and cannabinoid receptor-2 (CB-1R and CB-2R) and compared them to WOBE15 which signals via CB-2R. Barrier disruption and skin irritation were induced by tape stripping or by sodium dodecyl sulphate (SDS) patch testing. Immediately after barrier disruption, 30 µL of 0.5% WOBE440, WOL067-531 and WOBE15 solutions or the vehicle was applied topically. Barrier repair was monitored by transepidermal water loss at 1.5, 3, 5 and 7 hours. We found that barrier repair was significantly delayed by WOL067-531. A tendency for a delay was noticed for WOBE440, whereas for WOBE15, no effect was observed. Immunohistology showed that the tape-stripping-induced increase in epidermal proliferation and filaggrin expression was significantly reduced by topical applications of WOL067-531 and WOBE440, but not by WOBE15. Also, the SDS-induced inflammation, as determined by the number of inflammatory cells, was reduced by WOL067-531 and WOBE440. In summary, we showed that WOL067-531 exhibits a significant effect on skin barrier repair, epidermal proliferation/differentiation and inflammation.


Assuntos
Endocanabinoides/fisiologia , Absorção Cutânea/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Animais , Benzoxazóis/farmacologia , Água Corporal/metabolismo , Endocanabinoides/antagonistas & inibidores , Epiderme/efeitos dos fármacos , Epiderme/lesões , Epiderme/metabolismo , Epiderme/patologia , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/biossíntese , Camundongos , Camundongos Pelados , Testes do Emplastro , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Dodecilsulfato de Sódio/toxicidade , Subpopulações de Linfócitos T/imunologia
12.
Proc Natl Acad Sci U S A ; 113(4): 1086-91, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26755579

RESUMO

Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.


Assuntos
Lipase Lipoproteica/antagonistas & inibidores , Nicotina/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Ácidos Araquidônicos/análise , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/fisiologia , Endocanabinoides/análise , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/fisiologia , Glicerídeos/análise , Glicerídeos/antagonistas & inibidores , Glicerídeos/fisiologia , Masculino , Ratos , Ratos Wistar , Autoadministração , Área Tegmentar Ventral/fisiologia , Ácido gama-Aminobutírico/metabolismo
13.
Mol Pharmacol ; 94(1): 743-748, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29669714

RESUMO

Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are two main cannabinoid constituents of marijuana and hashish. The pharmacology of Δ9-THC has been extensively studied, whereas our understanding of the pharmacology of CBD has remained limited, despite excitement in CBD's potential role in treating certain pediatric epilepsies and its reputation for attenuating some Δ9-THC-induced effects. It was established early on that CBD binds poorly to the orthosteric site of CB1 or CB2 cannabinoid receptors, and its actions were commonly attributed to other noncannabinoid receptor mechanisms. However, recent evidence suggests that CBD does indeed act at cannabinoid CB1 receptors as a negative allosteric modulator (NAM) of CB1 signaling. By altering the orthosteric signaling of a G protein-coupled receptor, allosteric modulators greatly increase the richness of G protein-coupled receptor pharmacology. We have recently surveyed candidate CB1 NAMs in autaptic hippocampal neurons, a well-characterized neuronal model of endogenous cannabinoid signaling, and have now tested CBD in this model. We find that although CBD has no direct effect on excitatory transmission, it does inhibit two forms of endogenous cannabinoid-mediated retrograde synaptic plasticity: depolarization-induced suppression of excitation and metabotropic suppression of excitation, while not affecting signaling via GABA-B receptors. These results are consistent with the recently described NAM activity of CBD and suggest interesting possible mechanisms for CBD's therapeutic actions.


Assuntos
Canabidiol/farmacologia , Endocanabinoides/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Canabinoides/metabolismo , Hipocampo/metabolismo , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
14.
J Neuroinflammation ; 15(1): 142, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29759062

RESUMO

BACKGROUND: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. METHODS: Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. RESULTS: Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. CONCLUSIONS: Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.


Assuntos
Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Permeabilidade Capilar/fisiologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Permeabilidade Capilar/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hidrólise/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo
15.
Neurochem Res ; 43(9): 1756-1765, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29987693

RESUMO

Depression is a common mental disorder in adolescents, with a prevalence rate of 5.6%. Current anti-depressive options for adolescents are limited: psychological intervention and conventional antidepressants have low efficacy, a delayed onset of action and increased possibility of suicidal risk. Repetitive transcranial magnetic stimulation (rTMS) as an effective and noninvasive physical therapy for adult depression has been investigated in recent years. However, whether it also produces similar effects on juvenile depression and the underlying mechanism are not clearly understood. In this study, chronic unpredictable mild stress (CMS) was applied to 3-week-old male Sprague Dawley rats for 21 days. Then rTMS was performed for seven consecutive days, and the anti-depressive effects were evaluated by behavioral tests including the sucrose preference test (SPT), the forced swimming test (FST), and the novelty suppressed feeding test (NSF). Expression of hippocampal cannabinoid type I receptor (CB1R), 2-arachidonoylglycerol (2-AG) and relative synthetase and degradative enzymes-diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) were also investigated. The behavioral parameters were also observed after the administration of the selective CB1 receptor antagonist AM251. The results showed that CMS induced a significant decrease in sucrose preference, a significant increase of immobility time in the FST, and an increased latency to feed in the NSF. In addition, reduced hippocampal CB1 receptor, 2-AG level and increased MAGL protein expression level were also observed in CMS rats. Meanwhile, rTMS treatment upregulated 2-AG level in the hippocampus and ameliorated depressive-like behaviors. The anti-depressive effect of rTMS was attenuated by AM251, a specific CB1R antagonist that was administered 30 min before the onset of rTMS by either intraperitoneal administration or hippocampal microinjection. These results indicate that rTMS can be used as an antidepressive therapy for juvenile depression at least partly mediated by increasing hippocampal 2-AG and CB1 receptor expression levels.


Assuntos
Depressão/metabolismo , Depressão/terapia , Endocanabinoides/metabolismo , Hipocampo/metabolismo , Estimulação Magnética Transcraniana/métodos , Fatores Etários , Animais , Endocanabinoides/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Masculino , Microinjeções/métodos , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo
16.
J Neurosci ; 36(3): 837-50, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791214

RESUMO

The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. Significance statement: Dysfunctions in prefrontal cortical interactions with subcortical brain regions, such as the amygdala, are emerging as important players in neuropsychiatric disorders and pain. This study identifies a novel mechanism and rescue strategy for impaired medial prefrontal cortical function in an animal model of arthritis pain. Specifically, an integrative approach of optogenetics, pharmacology, electrophysiology, and behavior is used to advance the novel concept that a breakdown of metabotropic glutamate receptor subtype mGluR5 and endocannabinoid signaling in infralimbic pyramidal cells fails to control abnormal amygdala-driven synaptic inhibition in the arthritis pain model. Restoring endocannabinoid signaling allows mGluR5 activation to increase infralimbic output hence inhibit pain behaviors and mitigate pain-related cognitive deficits.


Assuntos
Artrite Experimental/metabolismo , Endocanabinoides/metabolismo , Inibição Neural/fisiologia , Dor/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Acrilamidas/farmacologia , Animais , Artrite Experimental/prevenção & controle , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Tomada de Decisões/efeitos dos fármacos , Tomada de Decisões/fisiologia , Endocanabinoides/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Inibição Neural/efeitos dos fármacos , Dor/prevenção & controle , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
J Pharmacol Exp Ther ; 363(3): 314-323, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947487

RESUMO

An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type 1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly used for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine [AEA (or anandamide)] and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in CB1-related discriminative stimulus effects in laboratory subjects. Squirrel monkeys (n = 8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, the inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (JZL195, AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were nonsurmountably antagonized by low doses of rimonabant. Additionally, FAAH or MGL inhibition revealed CB1-like subjective effects produced by AEA but not by 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.


Assuntos
Amidoidrolases/antagonistas & inibidores , Aprendizagem por Discriminação/efeitos dos fármacos , Drogas em Investigação/farmacologia , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Receptor CB1 de Canabinoide/agonistas , Adamantano/administração & dosagem , Adamantano/efeitos adversos , Adamantano/análogos & derivados , Adamantano/farmacologia , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/agonistas , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/efeitos adversos , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinol/administração & dosagem , Canabinol/efeitos adversos , Canabinol/análogos & derivados , Canabinol/farmacologia , Relação Dose-Resposta a Droga , Agonismo de Drogas , Antagonismo de Drogas , Drogas em Investigação/administração & dosagem , Drogas em Investigação/efeitos adversos , Endocanabinoides/administração & dosagem , Endocanabinoides/agonistas , Endocanabinoides/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Glicerídeos/administração & dosagem , Glicerídeos/agonistas , Glicerídeos/antagonistas & inibidores , Glicerídeos/farmacologia , Injeções Intramusculares , Injeções Intravenosas , Ligantes , Masculino , Monoacilglicerol Lipases/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Alcamidas Poli-Insaturadas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Saimiri
18.
Pharmacology ; 99(5-6): 259-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214870

RESUMO

We investigated the effects of S-777469 (1-[[6-Ethyl-1-[4-fluorobenzyl]-5-methyl-2-oxo-1, 2-dihydropyridine-3-carbonyl]amino]-cyclohexanecarboxylic acid), a novel cannabinoid type 2 receptor (CB2) agonist, on 1-fluoro-2,4-dinitrobenzene (DNFB)-induced ear inflammation and mite antigen-induced dermatitis in mice. The oral administration of S-777469 significantly suppressed DNFB-induced ear swelling in a dose-dependent manner. In addition, S-777469 significantly alleviated mite antigen-induced atopic dermatitis-like skin lesions in NC/Nga mice. A histological analysis revealed that S-777469 significantly reduced the epidermal thickness and the number of mast cells infiltrating skin lesions. We demonstrated that S-777469 inhibited mite antigen-induced eosinophil accumulation in skin lesions and an endogenous CB2 ligand, 2-arachidonoylglycerol (2-AG)-induced eosinophil migration in vitro. Moreover, we confirmed that 2-AG levels significantly increased in skin lesions of mite antigen-induced dermatitis model. Together, these results suggest that S-777469 inhibits skin inflammation in mice by blocking the activities of 2-AG.


Assuntos
Inflamação/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Pele/efeitos dos fármacos , Pele/patologia , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Ensaios de Migração de Leucócitos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitrofluorbenzeno , Relação Dose-Resposta a Droga , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Inflamação/induzido quimicamente , Masculino , Camundongos , Infestações por Ácaros/tratamento farmacológico , Infestações por Ácaros/metabolismo
19.
Hippocampus ; 25(1): 16-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25131612

RESUMO

The endocannabinoid ligand 2-arachidonoylglycerol (2-AG) is inactivated primarily by monoacylglycerol lipase (MAGL). We have shown recently that chronic treatments with MAGL inhibitor JZL184 produce antidepressant- and anxiolytic-like effects in a chronic unpredictable stress (CUS) model of depression in mice. However, the underlying mechanisms remain poorly understood. Adult hippocampal neurogenesis has been implicated in animal models of anxiety and depression and behavioral effects of antidepressants. We tested whether CUS and chronic JZL184 treatments affected adult neurogenesis and synaptic plasticity in the dentate gyrus (DG) of mouse hippocampus. We report that CUS induced depressive-like behaviors and decreased the number of bromodeoxyuridine-labeled neural progenitor cells and doublecortin-positive immature neurons in the DG, while chronic JZL184 treatments prevented these behavioral and cellular deficits. We also investigated the effects of CUS and chronic JZL184 on a form long-term potentiation (LTP) in the DG known to be neurogenesis-dependent. CUS impaired LTP induction, whereas chronic JZL184 treatments restored LTP in CUS-exposed mice. These results suggest that enhanced adult neurogenesis and long-term synaptic plasticity in the DG of the hippocampus might contribute to antidepressant- and anxiolytic-like behavioral effects of JZL184.


Assuntos
Antidepressivos/farmacologia , Ácidos Araquidônicos/antagonistas & inibidores , Comportamento Animal/fisiologia , Benzodioxóis/farmacologia , Agonistas de Receptores de Canabinoides/metabolismo , Giro Denteado/fisiopatologia , Depressão/fisiopatologia , Endocanabinoides/antagonistas & inibidores , Glicerídeos/antagonistas & inibidores , Monoacilglicerol Lipases/antagonistas & inibidores , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Piperidinas/farmacologia , Estresse Psicológico/fisiopatologia , Animais , Ansiolíticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Depressão/tratamento farmacológico , Hidrólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
20.
Handb Exp Pharmacol ; 231: 95-128, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26408159

RESUMO

The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Descoberta de Drogas , Endocanabinoides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Endocanabinoides/metabolismo , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Hidrólise , Terapia de Alvo Molecular , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA