Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 295-306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720037

RESUMO

Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.


Assuntos
Dióxido de Carbono , Combustíveis Fósseis , Indústria de Petróleo e Gás , Energia Renovável , Ciclo do Carbono , Dióxido de Carbono/efeitos adversos , Dióxido de Carbono/isolamento & purificação , Carvão Mineral/efeitos adversos , Carvão Mineral/provisão & distribuição , Combustíveis Fósseis/efeitos adversos , Combustíveis Fósseis/provisão & distribuição , Hidrogênio/química , Gás Natural/efeitos adversos , Gás Natural/provisão & distribuição , Petróleo/efeitos adversos , Petróleo/provisão & distribuição , Energia Renovável/estatística & dados numéricos , Indústria de Petróleo e Gás/métodos , Indústria de Petróleo e Gás/tendências
12.
Nature ; 493(7433): 514-7, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23334409

RESUMO

Legislation on biofuels production in the USA and Europe is directing food crops towards the production of grain-based ethanol, which can have detrimental consequences for soil carbon sequestration, nitrous oxide emissions, nitrate pollution, biodiversity and human health. An alternative is to grow lignocellulosic (cellulosic) crops on 'marginal' lands. Cellulosic feedstocks can have positive environmental outcomes and could make up a substantial proportion of future energy portfolios. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (-851 ± 46 grams of CO(2) equivalent emissions per square metre per year (gCO(2)e m(-2) yr(-1))). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn-soybean-wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of -397 ± 32 gCO(2)e m(-2) yr(-1); a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability, such as water quality and biodiversity, await future study.


Assuntos
Agricultura/métodos , Biocombustíveis/provisão & distribuição , Energia Renovável/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Biocombustíveis/estatística & dados numéricos , Biomassa , Pegada de Carbono/estatística & dados numéricos , Celulose/metabolismo , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Política Ambiental , Etanol/metabolismo , Etanol/provisão & distribuição , Combustíveis Fósseis/estatística & dados numéricos , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Michigan , Meio-Oeste dos Estados Unidos
14.
Nature ; 488(7411): 294-303, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22895334

RESUMO

Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.


Assuntos
Conservação de Recursos Energéticos/tendências , Energia Renovável/estatística & dados numéricos , Animais , Conservação de Recursos Energéticos/estatística & dados numéricos , Eletricidade , Fontes Geradoras de Energia/economia , Fontes Geradoras de Energia/história , Fontes Geradoras de Energia/estatística & dados numéricos , Fricção , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Cavalos/fisiologia , Veículos Automotores , Energia Renovável/economia , Meios de Transporte/estatística & dados numéricos , Estados Unidos
19.
Environ Sci Technol ; 50(4): 2108-16, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26735210

RESUMO

Renewable electricity is an important tool in the fight against climate change, but globally these technologies are still in the early stages of diffusion. To contribute to our understanding of the factors driving this diffusion, I study relationships between national values (measured by Hofstede's cultural dimensions) and renewable electricity adoption at the national level. Existing data for 66 nations (representing an equal number of developed and developing economies) are used to fuel the analysis. Somewhat dependent on limited available data on controls for grid reliability and the cost of electricity, I discover that three of Hofstede's dimensions (high uncertainty avoidance, low masculinity-femininity, and high individualism-collectivism) have significant exponential relationships with renewable electricity adoption. The dimension of uncertainty avoidance appears particularly appropriate for practical application. Projects or organizations implementing renewable electricity policy, designs, or construction should particularly attend to this cultural dimension. In particular, as the data imply that renewable technologies are being used to manage risk in electricity supply, geographies with unreliable grids are particularly likely to be open to renewable electricity technologies.


Assuntos
Cultura , Energia Renovável , Eletricidade , Humanos , Modelos Teóricos , Energia Renovável/economia , Energia Renovável/estatística & dados numéricos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA