RESUMO
BACKGROUND: Varicose veins (VV) are one of the common human diseases, but the role of genetics in its development is not fully understood. METHODS: We conducted an exome-wide association study of VV using whole-exome sequencing data from the UK Biobank, and focused on common and rare variants using single-variant association analysis and gene-level collapsing analysis. FINDINGS: A total of 13,823,269 autosomal genetic variants were obtained after quality control. We identified 36 VV-related independent common variants mapping to 34 genes by single-variant analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associations between genes and VV were replicated in FinnGen. PIEZO1 was the closest gene associated with VV (P = 5.05 × 10-31), and it was found to reach exome-wide significance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1 and METTL21A) associated with VV were identified, of which METTL21A was associated only with females. The pleiotropic effects of VV-related genes suggested that body size, inflammation, and pulmonary function are strongly associated with the development of VV. CONCLUSIONS: Our findings highlight the importance of causal genes for VV and provide new directions for treatment.
Assuntos
Sequenciamento do Exoma , Exoma , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Varizes , Humanos , Varizes/genética , Feminino , Masculino , Exoma/genética , Polimorfismo de Nucleotídeo Único , Enzimas Conversoras de Endotelina/genética , Pessoa de Meia-Idade , Variação Genética , Adulto , Canais IônicosRESUMO
BACKGROUND: Lung cancer is the second most common malignancy in the world, and lung adenocarcinoma (LUAD) in particular is the leading cause of cancer death worldwide. Endothelin converting enzyme 1 (ECE1) is a membrane-bound metalloprotease involved in endothelin-1 (ET-1) processing and regulates vasoconstriction. However, very few studies have reported the involvement of ECE1 in regulating tumor cell proliferation, and the mechanism remains poorly understood. Therefore, we aimed to determine the role of ECE1 in lung cancer development. METHODS: The Cancer Genome Atlas database and Kaplan-Meier plotter were used to assess the association between ECE1 and lung cancer. The expression of ECE1 was detected using immunohistochemistry staining and western blotting. A variety of in vitro assays were performed to evaluate the effects of ECE1 on the colony formation, proliferation, migration and invasion using ECE1 knockdown lung cancer cells. The gene expression profiles regulated by ECE1 were investigated by RNA sequencing. An immunoprecipitation assay and immunofluorescence assay were used to evaluate the mechanism underlying the regulatory effect of ECE1 on protein kinase B (AKT). The effect of ECE1 on tumor development was assessed by xenografted lung cancer cells in either C57BL/6 mice or nude mice. RESULTS: ECE1 was upregulated in LUAD and correlated with the poor prognosis of patients with LUAD. Functional studies showed that knockdown of ECE1 retarded the progression of tumors formed by lung cancer cells at least partly by inhibiting tumor cell proliferation. Moreover, ECE1 accelerated tumor cell proliferation through promoting AKT activation dispensable of its canonical target ET-1. Mechanically, ECE1 interacted with the pleckstrin homology (PH) domain of AKT and facilitated its translocation to the plasma membrane for activation. Furthermore, the inhibition of AKT activity counteracted the lung cancer cell growth inhibition observed both in vitro and in xenografts caused by ECE1 suppression. CONCLUSIONS: The present study reveals a non-canonical function of ECE1 in regulating AKT activation and cell proliferation, which provides the basis for the development of a novel strategy for the intervention of cancer including LUAD by abrogating ECE1-AKT signaling.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos Endogâmicos C57BL , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function. The present study postulates that obesity augments ET-1 production in the PVAT, decreases the function of the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor, further increasing reactive oxygen species (ROS) generation, culminating in PVAT dysfunction. Male C57BL/6 mice were fed either a standard or a high-fat diet for 16 weeks. Mice were also treated with saline or a daily dose of 100 mg·kg-1 of the ETA and ETB receptor antagonist Bosentan, for 7 days. Vascular function was evaluated in thoracic aortic rings, with and without PVAT. Mechanistic studies utilized PVAT from all groups and cultured WT-1 mouse brown adipocytes. PVAT from obese mice exhibited increased ET-1 production, increased ECE1 and ETA gene expression, loss of the anticontractile effect, as well as increased ROS production, decreased Nrf2 activity, and downregulated expression of Nrf2-targeted antioxidant genes. PVAT of obese mice also exhibited increased expression of Tyr216-phosphorylated-GSK3ß and KEAP1, but not BACH1 - negative Nrf2 regulators. Bosentan treatment reversed all these effects. Similarly, ET-1 increased ROS generation and decreased Nrf2 activity in brown adipocytes, events mitigated by BQ123 (ETA receptor antagonist). These findings place ET-1 as a major contributor to PVAT dysfunction in obesity and highlight that pharmacological control of ET-1 effects restores PVAT's cardiovascular protective role.
Assuntos
Tecido Adiposo , Regulação para Baixo , Endotelina-1 , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Obesidade , Espécies Reativas de Oxigênio , Animais , Endotelina-1/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Masculino , Tecido Adiposo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bosentana/farmacologia , Dieta Hiperlipídica , Camundongos , Estresse Oxidativo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina A/genética , Enzimas Conversoras de Endotelina/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiopatologiaRESUMO
BACKGROUND: Lung cancer constitutes the leading cause of cancer mortality. High levels of endothelin-1 (ET-1), its cognate receptor ETAR and its activating enzyme, the endothelin-converting enzyme-1 (ECE-1), have been reported in several cancer types, including lung cancer. ECE-1 comprises four isoforms, which only differ in their cytoplasmic N-terminus. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE-1c, increasing its stability and leading to enhanced invasiveness in glioblastoma and colorectal cancer cells, which is believed to be mediated by the amino acid residue Lys-6, a conserved putative ubiquitination site neighboring the CK2-phosphorylated residues Ser-18 and Ser-20. Whether Lys-6 is linked to the acquisition of a cancer stem cell (CSC)-like phenotype and aggressiveness in human non-small cell lung cancer (NSCLC) cells has not been studied. METHODS: In order to establish the role of Lys-6 in the stability of ECE-1c and its involvement in lung cancer aggressiveness, we mutated this residue to a non-ubiquitinable arginine and constitutively expressed the wild-type (ECE-1cWT) and mutant (ECE-1cK6R) proteins in A549 and H1299 human NSCLC cells by lentiviral transduction. We determined the protein stability of these clones alone or in the presence of the CK2 inhibitor silmitasertib, compared to ECE-1cWT and mock-transduced cells. In addition, the concentration of secreted ET-1 in the growth media was determined by ELISA. Expression of stemness genes were determined by Western blot and RT-qPCR. Chemoresistance to cisplatin was studied by MTS viability assay. Migration and invasion were measured through transwell and Matrigel assays, respectively, and the side-population was determined using flow cytometry. RESULTS: ECE-1cK6R displayed higher stability in NSCLC cells compared to ECE-1cWT-expressing cells, but ET-1 secreted levels showed no difference up to 48 h. Most importantly, ECE-1cK6R promoted expression of the stemness genes c-Myc, Sox-2, Oct-4, CD44 and CD133, which enhance cellular self-renewal capability. Also, the ECE-1cK6R-expressing cells showed higher cisplatin chemoresistance, correlating with an augmented side-population abundance due to the increased expression of the ABCG2 efflux pump. Finally, the ECE-1cK6R-expressing cells showed enhanced invasiveness, which correlated with the regulated expression of known EMT markers. CONCLUSIONS: Our findings suggest an important role of ECE-1c in lung cancer. ECE-1c is key in a non-canonical ET-1-independent mechanism which triggers a CSC-like phenotype, leading to enhanced lung cancer aggressiveness. Underlying this mechanism, ECE-1c is stabilized upon phosphorylation by CK2, which is upregulated in many cancers. Thus, phospho-ECE-1c may be considered as a novel prognostic biomarker of recurrence, as well as the CK2 inhibitor silmitasertib as a potential therapy for lung cancer patients.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Enzimas Conversoras de Endotelina , Neoplasias Pulmonares , Humanos , Enzimas Conversoras de Endotelina/metabolismo , Enzimas Conversoras de Endotelina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Western BlottingRESUMO
Cerebral clearance of amyloid ß-protein (Aß) is decreased in early-onset and late-onset Alzheimer's disease (AD). Aß is cleared from the brain by enzymatic degradation and by transport out of the brain. More than 20 Aß-degrading enzymes have been described. Increasing the degradation of Aß offers an opportunity to decrease brain Aß levels in AD patients. This review discusses the direct and indirect approaches which have been used in experimental systems to alter the expression and/or activity of Aß-degrading enzymes. Also discussed are the enzymes' regulatory mechanisms, the conformations of Aß they degrade, where in the scheme of Aß production, extracellular release, cellular uptake, and intracellular degradation they exert their activities, and changes in their expression and/or activity in AD and its animal models. Most of the experimental approaches require further confirmation. Based upon each enzyme's effects on Aß (some of the enzymes also possess ß-secretase activity and may therefore promote Aß production), its direction of change in AD and/or its animal models, and the Aß conformation(s) it degrades, investigating the effects of increasing the expression of neprilysin in AD patients would be of particular interest. Increasing the expression of insulin-degrading enzyme, endothelin-converting enzyme-1, endothelin-converting enzyme-2, tissue plasminogen activator, angiotensin-converting enzyme, and presequence peptidase would also be of interest. Increasing matrix metalloproteinase-2, matrix metalloproteinase-9, cathepsin-B, and cathepsin-D expression would be problematic because of possible damage by the metalloproteinases to the blood brain barrier and the cathepsins' ß-secretase activity. Many interventions which increase the enzymatic degradation of Aß have been shown to decrease AD-type pathology in experimental models. If a safe approach can be found to increase the expression or activity of selected Aß-degrading enzymes in human subjects, then the possibility that this approach could slow the AD progression should be examined in clinical trials.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/metabolismo , Enzimas Conversoras de Endotelina , Doença de Alzheimer/metabolismo , Ativador de Plasminogênio Tecidual , Metaloproteinase 2 da Matriz , Secretases da Proteína Precursora do Amiloide , Neprilisina/metabolismo , CatepsinasRESUMO
BACKGROUND: Circular RNAs (circRNAs) have been shown to be essential for the emergence and growth of different cancers. However, further research is required to validate the function of circRNA in glioblastoma (GBM). METHODS: CircNDC80 expression in both normal brain tissues (NBTs) and glioma tissues was determined using real-time PCR. The impact of circNDC80 on GBM cell proliferation, migration, and invasion was then confirmed by CCK-8, colony formation, EdU incorporation, Transwell, and wound healing assays. To determine how circNDC80 affects the capacity of glioma stem cells (GSCs) to maintain their stemness and self-renewal, a CellTiter-Glo assay, clonogenic assay and extreme limiting dilution assay were utilized. To ascertain the impact of circNDC80 in vivo, intracranial xenograft models were established. RESULTS: When compared to NBT, glioblastoma tissue had a higher level of circNDC80 expression. In functional assays, circNDC80 promoted glioblastoma cell proliferation, migration, and invasion, while sustaining the stemness and fostering the self-renewal of glioma stem cells. In addition, a dual luciferase reporter assay and circRIP were used to verify that circNDC80 simultaneously affects the expression of ECE1 mRNA by sponging miR-139-5p, and a rescue experiment was used to verify the above results further. CONCLUSIONS: According to our research, circNDC80 is an oncogenic factor that promotes glioblastoma through the miR-139-5p/ECE1 pathway. This implies that circNDC80 may be employed as a novel therapeutic target and a possible predictive biomarker.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , RNA Circular , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Enzimas Conversoras de Endotelina , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismoRESUMO
Objectives: Endothelin-1 (ET-1), the most potent endogenous vasoconstrictor, generated by enzymatic cleavage catalyzed by an endothelin-converting enzyme (ECE), plays a significant role in the regulation of hypertension. Methods: This study investigates the effect of endothelin-1 (Lys198Asn/rs5370) and ECE (rs212526 C/T) gene polymorphisms with essential hypertension (EH) among Malay ethnics. To determine the association of gene polymorphism, 177 hypertensives and controls (196) were genotyped using Taqman method. Results: A significant difference was observed in ET-1 rs5370 and ECE rs212526 gene polymorphisms between EH and control subjects (P < 0.001). A significantly high body mass index (BMI), waist-to-hip ratio, fasting plasma glucose, hemoglobin A1c, systolic and diastolic blood pressure, and lipid profiles were observed among the EH patients when compared to controls (P < 0.05). Moreover, T allele (rs5370) carriers in males have a high risk for EH. There was no significant association between gender in ECE C/T polymorphisms (P > 0.05). Conclusion: Based on our result, it is evident that the T allele of ET-1 rs5370 polymorphism and C allele of ECE rs212526 have a significant genetic risk factor in EH among Malay subjects, and BMI and age are associated with hypertension.
Assuntos
Endotelina-1 , Enzimas Conversoras de Endotelina , Hipertensão Essencial , Endotelina-1/genética , Enzimas Conversoras de Endotelina/genética , Hipertensão Essencial/genética , Feminino , Humanos , Malásia/epidemiologia , Masculino , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Assuntos
Endorribonucleases/metabolismo , Endotelina-1/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Glioma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , RNA Mensageiro/metabolismoRESUMO
The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPß produced by ß-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic ß-secretase pathway and accumulation of the neurotoxic Aß peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.
Assuntos
Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/enzimologia , Córtex Cerebral/enzimologia , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Regulação da Expressão Gênica , Insulisina/genética , Insulisina/metabolismo , Masculino , Neprilisina/genética , Neprilisina/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismoRESUMO
Restenosis remains the main complication after percutaneous coronary interventions in patients with coronary heart disease. The causes of its development include, in particular, genetic factors. We studied polymorphic loci of genes encoding endothelin-1 (EDN1 rs5370), endothelin-1 receptor (EDNRA rs5333), endothelin-converting enzyme (ECE1 rs1076669), and endothelial NO synthase (eNOS rs1549758, eNOS rs1799983, and eNOS rs2070244) in the context of in-stent restenosis development. It was found that the analyzed polymorphisms of the endothelin system genes were more significant for patients aged ≥ 65 years, while the polymorphic loci of the endothelial NO synthase gene (eNOS rs1799983 and eNOS rs1549758) were predominantly associated with time of in-stent restenosis. The obtained results can be useful for comprehensive assessment of the restenosis risk factors and the choice of optimal treatment for patients with coronary heart disease before elective surgical intervention.
Assuntos
Doença da Artéria Coronariana , Oclusão de Enxerto Vascular/genética , Intervenção Coronária Percutânea/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/cirurgia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/cirurgia , Endotelina-1/genética , Enzimas Conversoras de Endotelina/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Oclusão de Enxerto Vascular/epidemiologia , Humanos , Masculino , Neovascularização Patológica/epidemiologia , Neovascularização Patológica/genética , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo de Nucleotídeo Único , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/genética , Receptor de Endotelina A/genética , Stents/efeitos adversosRESUMO
BACKGROUND: Osteosarcoma (OS) is the most common malignant bone tumor and has a poor prognosis. The potential involvement of circular RNAs (circRNAs) in OS progression remains unexplored. Here, we report that CircECE1, a circular RNA derived from human ECE1, plays a critical role in energy metabolism in OS. METHODS: The RIP chip sequence assay was performed to confirm CircECE1, through overexpression or knockdown of CircECE1 to verify its function in 143B and U2OS. RNA immunoprecipitation and immunoprecipitation were used to verify CircECE1's regulation of protein c-Myc and co- immunoprecipitation was used to verified the competitive binding relationship between CircECE1 and SPOP. The influence of CircECE1 on energy metabolism was evaluated by seahorse experiment, western blot, and immunohistochemistry. RESULTS: We found that CircECE1 is highly expressed in OS tissues and cells and that CircECE1 knockdown suppresses tumor proliferation and metastasis both in vitro and in vivo. Further, CircECE1 significantly promotes glucose metabolism in OS cells in vitro and in vivo. Mechanistically, CircECE1 interacts with c-Myc to prevent speckle-type POZ-mediated c-Myc ubiquitination and degradation. C-Myc inhibits thioredoxin binding protein (TXNIP) transcription and subsequently activates the Warburg effect. CONCLUSIONS: CircECE1 regulates the Warburg effect through the c-Myc/TXNIP axis. CircECE1 mediated signal transduction plays a important role in OS process and energy metabolism. These findings may identify novel targets for OS molecular therapy.
Assuntos
Neoplasias Ósseas/patologia , Enzimas Conversoras de Endotelina/genética , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/secundário , Proteínas Proto-Oncogênicas c-myc/química , RNA Circular/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , MicroRNAs , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Accumulating evidence suggests that the abnormal aggregation of amyloid-ß (Αß) peptide in Alzheimer's disease (AD) begins intraneuronally, within vesicles of the endosomal-lysosomal pathway where Aß is both generated and degraded. Metalloproteases, including endothelin-converting enzyme (ECE)-1 and -2, reside within these vesicles and normally limit the accumulation of intraneuronally produced Aß. In this study, we determined whether disruption of Aß catabolism could trigger Aß aggregation within neurons and increase the amount of Aß associated with exosomes, small extracellular vesicles derived from endosomal multivesicular bodies. Using cultured cell lines, primary neurons, and organotypic brain slices from an AD mouse model, we found that pharmacological inhibition of the ECE family of metalloproteases increased intracellular and extracellular Aß levels and promoted the intracellular formation of Aß oligomers, a process that did not require internalization of secreted Aß. In vivo, the accumulation of intraneuronal Aß aggregates was accompanied by increased levels of both extracellular and exosome-associated Aß, including oligomeric species. Neuronal exosomes were found to contain both ECE-1 and -2 activities, suggesting that multivesicular bodies are intracellular sites of Aß degradation by these enzymes. ECE dysfunction could lead to the accumulation of intraneuronal Aß aggregates and their subsequent release into the extracellular space via exosomes.-Pacheco-Quinto, J., Clausen, D., Pérez-González, R., Peng, H., Meszaros, A., Eckman, C. B., Levy, E., Eckman, E. A. Intracellular metalloprotease activity controls intraneuronal Aß aggregation and limits secretion of Aß via exosomes.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Exossomos/metabolismo , Metaloendopeptidases/metabolismo , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Espaço Extracelular/metabolismo , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Corpos Multivesiculares/metabolismo , Neurônios/metabolismo , ProteóliseRESUMO
Oral squamous cell carcinoma is associated with many known risk factors including tobacco smoking, chronic alcoholism, poor oral hygiene, unhealthy dietary habits and microbial infection. Previous studies have highlighted Candida albicans host tissue infection as a risk factor in the initiation and progression of oral cancer. C albicans invasion induces several cancerous hallmarks, such as activation of proto-oncogenes, induction of DNA damage and overexpression of inflammatory signalling pathways. However, the molecular mechanisms behind these responses remain unclear. A recently discovered fungal toxin peptide, candidalysin, has been reported as an essential molecule in epithelial damage and host recognition of C albicans infection. Candidalysin has a clear role in inflammasome activation and induction of cell damage. Several inflammatory molecules such as IL-6, IL-17, NLRP3 and GM-CSF have been linked to carcinogenesis. Candidalysin is encoded by the ECE1 gene, which has been linked to virulence factors of C albicans such as adhesion, biofilm formation and filamentation properties. This review discusses the recent epidemiological burden of oral cancer and highlights the significance of the ECE1 gene and the ECE1 protein breakdown product, candidalysin in oral malignancy. The immunological and molecular mechanisms behind oral malignancy induced by inflammation and the role of the toxic fungal peptide candidalysin in oral carcinogenesis are explored. With increasing evidence associating C albicans with oral carcinoma, identifying the possible fungal pathogenicity factors including the role of candidalysin can assist in efforts to understand the link between C albicans infection and carcinogenesis, and pave the way for research into therapeutic potentials.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Candida albicans/genética , Carcinogênese/genética , Enzimas Conversoras de Endotelina , Proteínas Fúngicas , Humanos , Neoplasias Bucais/genéticaRESUMO
Following nutrient ingestion, glucagon-like peptide 1 (GLP-1) is secreted from intestinal L-cells and mediates anti-diabetic effects, most notably stimulating glucose-dependent insulin release from pancreatic ß-cells but also inhibiting glucagon release, promoting satiety and weight reduction and potentially enhancing or preserving ß-cell mass. These effects are mediated by the GLP-1 receptor (GLP-1R), which is a therapeutic target in type 2 diabetes. Although agonism at the GLP-1R has been well studied, desensitisation and resensitisation are perhaps less well explored. An understanding of these events is important, particularly in the design and use of novel receptor ligands. Here, using either HEK293 cells expressing the recombinant human GLP-1R or the pancreatic ß-cell line, INS-1E with endogenous expressesion of the GLP-1R, we demonstrate GLP-1R desensitisation and subsequent resensitisation following removal of extracellular GLP-1 7-36 amide. Resensitisation is dependent on receptor internalisation, endosomal acidification and receptor recycling. Resensitisation is also regulated by endothelin-converting enzyme-1 (ECE-1) activity, most likely through proteolysis of GLP-1 in endosomes and the facilitation of GLP-1R dephosphorylation and recycling. Inhibition of ECE-1 activity also increases GLP-1-induced activation of extracellular signal-regulated kinase and generation of cAMP, suggesting processes dependent upon the lifetime of the internalised ligand-receptor complex.
Assuntos
Endossomos/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Proteólise , Transdução de Sinais , AMP Cíclico/genética , AMP Cíclico/metabolismo , Endossomos/genética , Enzimas Conversoras de Endotelina/genética , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Células HEK293 , Humanos , Fragmentos de Peptídeos/farmacologia , Transporte ProteicoRESUMO
BACKGROUND: Our previous study found that mild hypothermia (MH) after resuscitation reduced cerebral microcirculation, but the mechanism was not elucidated. The aim of this study was to clarify changes of endothelin-1 (ET-1) and nitric oxide (NO) systems in brain tissue during hypothermia after resuscitation. METHODS: Twenty-six domestic male Beijing Landrace pigs were used in this study. MH was intravascularly induced 1 h after resuscitation from 8-min ventricular fibrillation. Core temperature was reduced to 33 °C and maintained until 8 h after resuscitation, and then animals were euthanized. ET-1 and NO levels in brain tissue and peripheral plasma were measured. Expression of endothelin-converting enzyme-1 (ECE-1), endothelin A receptor (ET-AR), endothelin-B receptor, and nitric oxide synthase (NOS) in brain tissue was determined by Western blot analysis. RESULTS: Compared with non-hypothermia (NH) treatment, MH after resuscitation significantly increased the level of endothelin-1 and reduced the level of NO in peripheral blood and brain tissue. Cerebral expression of ECE-1 and ET-AR was significantly increased during MH after resuscitation. Moreover, MH significantly decreased inducible NOS expression compared with the NH group. CONCLUSIONS: The ET-1 system is activated, while inducible NOS is inhibited in brain tissue during MH after resuscitation.
Assuntos
Encéfalo/metabolismo , Endotelina-1/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Parada Cardíaca/metabolismo , Hipotermia Induzida , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Receptores de Endotelina/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Sus scrofa , SuínosRESUMO
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.
Assuntos
Endocitose/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Transporte Proteico/fisiologia , Animais , Linhagem Celular , Citoplasma/metabolismo , Endossomos/metabolismo , Endossomos/fisiologia , Enzimas Conversoras de Endotelina/metabolismo , Células HEK293 , Humanos , Ligantes , CamundongosRESUMO
The accumulation of amyloid beta (Aß) in the brain is believed to play a central role in the development and progression of Alzheimer's disease. Revisions to the amyloid cascade hypothesis now acknowledge the dynamic equilibrium in which Aß exists and the importance of enzymes involved in the production and breakdown of Aß in maintaining healthy Aß levels. However, while a wealth of pharmacological and immunological therapies are being generated to inhibit the Aß-producing enzymes, ß-site APP cleavage enzyme 1 and γ-secretase, the therapeutic potential of stimulating Aß-degrading enzymes such as neprilysin, endothelin-converting enzyme-1 and insulin-degrading enzyme remains relatively unexplored. Recent evidence indicates that increasing Aß degradation as opposed to inhibiting synthesis is a more effective strategy to prevent Aß build-up. Therefore Aß degrading enzymes have become valuable targets of therapy. In this review, we discuss the pathway of Aß synthesis and clearance along with the opportunities they present for therapeutic intervention, the benefits of increasing the expression/activity of Aß-degrading enzymes, and the untapped therapeutic potential of enzyme activation.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Enzimas Conversoras de Endotelina/metabolismo , Ativadores de Enzimas/farmacologia , Insulisina/metabolismo , Neprilisina/metabolismo , Proteólise/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/química , Animais , Terapia Genética , HumanosRESUMO
OBJECTIVE: The aim of the present investigation was to study the effect of hypoxia on the expression of genes encoding endothelin-1 (EDN1) and its cognate receptors (EDNRA and EDNRB) as well as endothelin converting enzyme 1 (ECE1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioma growth through ERN1 and hypoxia. METHODS: The expression level of EDN1, EDNRA, EDNRB, and ECE1 genes as well as micro-RNA miR-19, miR-96, and miR-206 was studied in control and ERN1 knockdown U87 glioma cells under hypoxia by quantitative polymerase chain reaction. RESULTS: It was shown that the expression level of EDN1, EDNRA, EDNRB, and ECE1 genes was up-regulated in ERN1 knockdown glioma cells in comparison with the control glioma cells, being more significant for endothelin-1. We also observed down-regulation of microRNA miR-206, miR-96, and miR-19a, which have specific binding sites in mRNA EDN1, EDNRA, and EDNRB, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Furthermore, inhibition of ERN1 endoribonuclease lead to up-regulation of EDNRA and ECE1 gene expressions and down-regulation of the expression level of EDN1 and EDNRB genes in glioma cells. Thus, the expression of EDNRA and ECE1 genes is regulated by ERN1 endoribonuclease, but EDN1 and EDNRB genes preferentially by ERN1 protein kinase. We have also shown that hypoxia enhanced the expression of EDN1, EDNRA, and ECE1 genes and that knockdown of ERN1 signaling enzyme function significantly modified the response of all studied gene expressions to hypoxia. Thus, effect of hypoxia on the expression level of EDN1 and ECE1 genes was significantly or completely reduced in ERN1 knockdown glioma cells since the expression of EDNRA gene was down-regulated under hypoxia. Moreover, hypoxia is induced the expression of EDNRB gene in ERN1 knockdown glioma cells. CONCLUSIONS: Results of this investigation demonstrate that ERN1 knockdown significantly increased the expression of endothelin-1 and its receptors as well as ECE1 genes by different mechanisms and that all studied gene expressions were sensitive to hypoxia. It is possible that hypoxic regulation of the expression of these genes is a result of complex interaction of variable ERN1 related transcription and regulatory factors with HIF1A and possibly contributed to the control of glioma growth.
Assuntos
Neoplasias Encefálicas/genética , Endorribonucleases/genética , Glioma/genética , Proteínas Serina-Treonina Quinases/genética , Hipóxia Tumoral/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Endorribonucleases/deficiência , Endotelina-1/genética , Enzimas Conversoras de Endotelina/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/metabolismo , Glioma/patologia , Humanos , Hipóxia/genética , Hipóxia/patologia , Proteínas Serina-Treonina Quinases/deficiência , Receptor de Endotelina A/genética , Receptor de Endotelina B/genéticaRESUMO
BACKGROUND: Endothelin-converting enzyme-1 (ECE-1) primarily converts big endothelins (ETs) into active endothelin-1 (ET-1). However, the expression pattern and prognostication status of ECE-1 in head and neck cancer (HNC) are enigmatic. In this study, we investigated ECE-1 expression and assessed the roles of ECE-1 as a predictor for HNC differentiation and prognosis. MATERIALS AND METHODS: ECE-1 expressions were evaluated by immunohistochemical analysis using a tissue microarray (TMA) composed of 100 cases of head and neck squamous cell carcinoma. The correlation of ECE-1 expression with clinicopathologic variables and patient outcomes was analyzed. RESULTS: ECE-1 may be overexpressed in HNC carcinoma cells. Higher ECE-1 level was detected more frequently in moderately to poorly differentiated tumors and showed a lower differentiation category compared to the G1 cases (p = 0.015); this finding was further confirmed by an adjusted odds ratio (OR) of 4.071 (p = 0.042). Moreover, Kaplan-Meier survival analyses showed that a higher ECE-1 expression was associated with a poorer survival in patients with HNC (p < 0.0001). On multivariate Cox proportional hazards models analysis, ECE-1 of high expression proved to be an independent prognostic factor with a hazard ratio (HR) of 3.985 (p < 0.001). CONCLUSION: Our data provide the first evidence that overexpression of ECE-1 in HNC is a predictor of poor tumor differentiation and prognosis.
Assuntos
Enzimas Conversoras de Endotelina/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos ProporcionaisRESUMO
The structurally related, but distinct neuropeptides, neuromedin U (NmU) and neuromedin S (NmS) are ligands of two G protein-coupled NmU receptors (NMU1 and NMU2). Hypothalamic NMU2 regulates feeding behavior and energy expenditure and has therapeutic potential as an anti-obesity target, making an understanding of its signaling and regulation of particular interest. NMU2 binds both NmU and NmS with high affinity, resulting in receptor-ligand co-internalization. We have investigated whether receptor trafficking events post-internalization are biased by the ligand bound and can therefore influence signaling function. Using recombinant cell lines expressing human NMU2, we demonstrate that acute Ca2+ signaling responses to NmU or NmS are indistinguishable and that restoration of responsiveness (resensitization) requires receptor internalization and endosomal acidification. The rate of NMU2 resensitization is faster following NmU compared with NmS exposure, but is similar if endothelin-converting enzyme-1 activity is inhibited or knocked down. Although acute activation of extracellular signal-regulated kinase (ERK) is also similar, activation by NMU2 is longer lasting if NmS is the ligand. Furthermore, when cells are briefly challenged before removal of free, but not receptor-bound ligand, activation of ERK and p38 mitogen-activated protein kinase by NmS is more sustained. However, only NmU responses are potentiated and extended by endothelin-converting enzyme-1 inhibition. These data indicate that differential intracellular ligand processing produces different signaling and receptor resensitization profiles and add to the findings of other studies demonstrating that intracellular ligand processing can shape receptor behavior and signal transduction.