Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Dev Biol ; 470: 21-36, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197427

RESUMO

Nodal signaling is essential for mesoderm and endoderm formation, as well as neural plate induction and establishment of left-right asymmetry. However, the mechanisms controlling expression of Nodal pathway genes in these contexts are not fully known. Previously, we showed that Cdx1b induces expression of downstream Nodal signaling factors during early endoderm formation. In this study, we show that Cdx1b also regulates epithalamic asymmetry in zebrafish embryos by modulating expression of ndr2 and lft1. We first knocked down cdx1b with translation-blocking and splicing-blocking morpholinos (MOs). Most embryos injected with translation-blocking MOs showed absent ndr2, lft1 and pitx2c expression in the left dorsal diencephalon during segmentation and pharyngula stages accompanied by aberrant parapineal migration and habenular laterality at 72 â€‹h post fertilization (hpf). These defects were less frequent in embryos injected with splicing-blocking MO. To confirm the morphant phenotype, we next generated both zygotic (Z)cdx1b-/- and maternal zygotic (MZ)cdx1b-/- mutants by CRISPR-Cas9 mutagenesis. Expression of ndr2, lft1 and pitx2c was absent in the left dorsal diencephalon of a high proportion of MZcdx1b-/- mutants; however, aberrant dorsal diencephalic pitx2c expression patterns were observed at low frequency in Zcdx1b-/- mutant embryos. Correspondingly, dysregulated parapineal migration and habenular laterality were also observed in MZcdx1b-/- mutant embryos at 72 hpf. On the other hand, Kupffer's vesicle cilia length and number, expression pattern of spaw in the lateral plate mesoderm and pitx2c in the gut as well as left-right patterning of various visceral organs were not altered in MZcdx1b-/- mutants compared to wild-type embryos. Chromatin immunoprecipitation revealed that Cdx1b directly regulates ndr2 and lft1 expression. Furthermore, injection of cdx1b-vivo MO1 but not cdx1b-vivo 4 â€‹mm MO1 in the forebrain ventricle at 18 hpf significantly downregulated lft1 expression in the left dorsal diencephalon at 23-24 â€‹s stages. Together, our results suggest that Cdx1b regulates transcription of ndr2 and lft1 to maintain proper Nodal activity in the dorsal diencephalon and epithalamic asymmetry in zebrafish embryos.


Assuntos
Padronização Corporal/genética , Epitálamo/embriologia , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Determinação Direita-Esquerda/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Movimento Celular , Diencéfalo/embriologia , Diencéfalo/metabolismo , Embrião não Mamífero/metabolismo , Epitálamo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Habenula/embriologia , Coração/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Determinação Direita-Esquerda/metabolismo , Proteína Nodal/metabolismo , Glândula Pineal/citologia , Glândula Pineal/embriologia , Ligação Proteica , Transdução de Sinais , Peixe-Zebra/metabolismo
2.
Development ; 146(12)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30872278

RESUMO

The embryonic diencephalon forms integration centers and relay stations in the forebrain. Anecdotal expression studies suggest that the diencephalon contains multiple developmental compartments and subdivisions. Here, we utilized single cell RNA sequencing to profile transcriptomes of dissociated cells from the diencephalon of E12.5 mouse embryos. We identified the divergence of different progenitors, intermediate progenitors, and emerging neurons. By mapping the identified cell groups to their spatial origins, we characterized the molecular features of cell types and cell states arising from various diencephalic domains. Furthermore, we reconstructed the developmental trajectory of distinct cell lineages, and thereby identified the genetic cascades and gene regulatory networks underlying the progression of the cell cycle, neurogenesis and cellular diversification. The analysis provides new insights into the molecular mechanisms underlying the amplification of intermediate progenitor cells in the thalamus. The single cell-resolved trajectories not only confirm a close relationship between the rostral thalamus and prethalamus, but also uncover an unexpected close relationship between the caudal thalamus, epithalamus and rostral pretectum. Our data provide a useful resource for systematic studies of cell heterogeneity and differentiation kinetics within the diencephalon.


Assuntos
Epitálamo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Área Pré-Tectal/embriologia , Análise de Célula Única/métodos , Tálamo/embriologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Camundongos , Neurogênese , Análise de Sequência de RNA/métodos , Células-Tronco , Análise Serial de Tecidos
3.
Dev Genes Evol ; 228(2): 131-139, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29663064

RESUMO

The epithalamic region of fishes shows prominent left-right asymmetries that are executed by nodal signaling upstream of the asymmetry-determining transcription factor pitx2. Previous reports have identified that nodal controls the left-sided pitx2 expression in the lateral plate mesoderm through an enhancer present in the last intron of this gene. However, whether similar regulation occurs also in the case of epithalamic asymmetry is currently unresolved. Here, we address some of the cis-regulatory information that control asymmetric pitx2 expression in epithalamus by presenting a Tg(pitx2:EGFP) 116-17 transgenic medaka model, which expresses enhanced green fluorescent protein (EGFP) under control of an intronic enhancer. We show that this transgene recapitulates epithalamic expression of the endogenous pitx2 and that it responds to nodal signaling inhibition. Further, we identify that three foxh1-binding sites present in this enhancer modulate expression of the transgene and that the second site is absolutely necessary for the left-sided epithalamic expression while the other two sites may have subtler regulative roles. We provide evidence that left-sided epithalamic pitx2 expression is controlled through an enhancer present in the last intron of this gene and that the regulatory logic underlying asymmetric pitx2 expression is shared between epithalamic and lateral plate mesoderm regions.


Assuntos
Elementos Facilitadores Genéticos , Epitálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Íntrons , Proteína Nodal/metabolismo , Oryzias/embriologia , Oryzias/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Epitálamo/embriologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Lateralidade Funcional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Proteína Nodal/genética , Transdução de Sinais , Fatores de Transcrição/genética , Transgenes/genética , Proteína Homeobox PITX2
4.
Development ; 141(7): 1572-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24598158

RESUMO

Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomical asymmetries are established has been achieved through the study of the zebrafish epithalamus. Morphological symmetry in the epithalamus is broken by leftward migration of the parapineal, which is required for the subsequent elaboration of left habenular identity; the habenular nuclei flank the midline and show L/R asymmetries in marker expression and connectivity. The Nodal target pitx2c is expressed in the left epithalamus, but nothing is known about its role during the establishment of asymmetry in the brain. We show that abrogating Pitx2c function leads to the right habenula adopting aspects of left character, and to an increase in parapineal cell numbers. Parapineal ablation in Pitx2c loss of function results in right habenular isomerism, indicating that the parapineal is required for the left character detected in the right habenula in this context. Partial parapineal ablation in the absence of Pitx2c, however, reduces the number of parapineal cells to wild-type levels and restores habenular asymmetry. We provide evidence suggesting that antagonism between Nodal and Pitx2c activities sets an upper limit on parapineal cell numbers. We conclude that restricting parapineal cell number is crucial for the correct elaboration of epithalamic asymmetry.


Assuntos
Padronização Corporal/genética , Habenula/embriologia , Glândula Pineal/embriologia , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Contagem de Células , Embrião não Mamífero , Epitálamo/citologia , Epitálamo/embriologia , Habenula/citologia , Proteína Nodal/fisiologia , Tamanho do Órgão/genética , Glândula Pineal/citologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Dev Biol ; 385(1): 13-22, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24184636

RESUMO

In the developing brain, the production of neurons from multipotent precursors must be carefully regulated in order to generate the appropriate numbers of various differentiated neuronal types. Inductive signals from extrinsic elements such as growth factors need to be integrated with timely expression of intrinsic elements such as transcription factors that define the competence of the cell. The transcriptional Mediator complex offers a mechanism to coordinate the timing and levels of intrinsic and extrinsic influences by acting as a rapid molecular switch for transcription of poised RNA pol II. The epithalamus is a highly conserved region of the vertebrate brain that differentiates early and rapidly in the zebrafish. It includes the pineal and parapineal organs and the habenular nuclei. Mutation of the Mediator complex subunit Med12 impairs the specification of habenular and parapineal neurons and causes a loss of differentiation in pineal neurons and photoreceptors. Although FGF ligands and transcription factors for parapineal and photoreceptor development are still expressed in the pineal complex of med12 mutants, FGF signaling is impaired and transcription factor expression is reduced and/or delayed. We find that the timely expression of one of these transcription factors, tbx2b, is controlled by Med12 and is vital for parapineal specification. We propose that the Mediator complex is responsible for subtle but significant changes in transcriptional timing and amplitude that are essential for coordinating the development of neurons in the epithalamus.


Assuntos
Epitálamo/embriologia , Complexo Mediador/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas com Domínio T/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Epitálamo/anormalidades , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Habenula/anormalidades , Habenula/embriologia , Complexo Mediador/genética , Glândula Pineal/anormalidades , Glândula Pineal/embriologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
6.
Brain Behav Evol ; 85(4): 257-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26184391

RESUMO

The parapineal is present in many teleost families, while it is absent in several others. To find out why the parapineal is absent at adult stages in the latter families, the development of the epithalamus was examined in the medaka fish (Oryzias latipes). For this purpose, a green fluorescent protein-transgenic medaka line, in which the pineal complex (pineal and parapineal) is visible fluorescently, was used. We found that a distinct parapineal was present in the roof plate at early developmental stages. Subsequently, however, the parapineal and the associated roof plate began to be incorporated into the habenula between embryonic stages 28 and 29. Between embryonic stages 29 and 30, the entire parapineal was incorporated into the habenula. That is, the parapineal became a small caudomedial region (termed the 'parapineal domain') within the left habenula in the majority of embryos, resulting in the left-sided asymmetry of the epithalamus. Thereby the left habenula became larger and more complex than its right counterpart. In the minority of embryos, the parapineal was incorporated into the right habenula or into the habenulae on both sides. In the majority of embryos, the parapineal domain projected a fiber bundle to a subnucleus (termed the 'rostromedial subnucleus') in the left habenula. The rostromedial subnucleus sent axons, through the left fasciculus retroflexus, to the rostral region of the left half of the interpeduncular nucleus. We further found that the ratio of the left-sided phenotype was temperature dependent and decreased in embryos raised at a high temperature. The present study is the first demonstration that the supposed lack of a distinct parapineal in adult teleost fishes is due to ontogenetic incorporation into the habenula.


Assuntos
Epitálamo/crescimento & desenvolvimento , Habenula/anatomia & histologia , Habenula/crescimento & desenvolvimento , Oryzias/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Epitálamo/anatomia & histologia , Epitálamo/embriologia , Habenula/embriologia , Microscopia de Fluorescência , Neurônios/citologia , Oryzias/anatomia & histologia , Oryzias/embriologia , Glândula Pineal/anatomia & histologia , Glândula Pineal/embriologia , Glândula Pineal/crescimento & desenvolvimento
7.
Dev Biol ; 374(2): 333-44, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23201575

RESUMO

Differences between the left and right sides of the brain are present in many animal species. For instance, in humans the left cerebral hemisphere is largely responsible for language and tool use and the right for processing spatial information. Zebrafish have prominent left-right asymmetries in their epithalamus that have been associated with differential left and right eye use and navigational behavior. In wild-type (WT) zebrafish embryos, Nodal pathway genes are expressed in the left side of the pineal anlage. Shortly thereafter, a parapineal organ forms to the left of the pineal. The parapineal organ causes differences in gene expression, neuropil density, and connectivity of the left and right habenula nuclei. In embryos that have an open neural tube, such as embryos that are deficient in Nodal signaling or the cell adhesion protein N-cadherin, the left and right sides of the developing epithalamus remain separated from one another. We find that the brains of these embryos often become left isomerized: both sides of the brain develop morphology and gene expression patterns that are characteristic of the left side. However, other aspects of epithalamic development, such as differentiation of specific neuronal cell types, are intact. We propose that there is a mechanism in embryos with closed neural tubes that prevents both sides from developing like the left side. This mechanism fails when the two sides of the epithalamus are widely separated from one another, suggesting that it is dependent upon a signaling protein with limited range.


Assuntos
Epitálamo/fisiologia , Tubo Neural/fisiologia , Proteína Nodal/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Epitálamo/embriologia , Epitálamo/metabolismo , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Habenula/embriologia , Habenula/metabolismo , Humanos , Hibridização In Situ , Mutação , Tubo Neural/embriologia , Tubo Neural/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Glândula Pineal/embriologia , Glândula Pineal/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Neuron ; 55(3): 407-15, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17678854

RESUMO

The vertebrate brain is anatomically and functionally asymmetric; however, the molecular mechanisms that establish left-right brain patterning are largely unknown. In zebrafish, asymmetric left-sided Nodal signaling within the developing dorsal diencephalon is required for determining the direction of epithalamic asymmetries. Here, we show that Six3, a transcription factor essential for forebrain formation and associated with holoprosencephaly in humans, regulates diencephalic Nodal activity during initial establishment of brain asymmetry. Reduction of Six3 function causes brain-specific deregulation of Nodal pathway activity, resulting in epithalamic laterality defects. Based on misexpression and genetic epistasis experiments, we propose that Six3 acts in the neuroectoderm to establish a prepattern of bilateral repression of Nodal activity. Subsequently, Nodal signaling from the left lateral plate mesoderm alleviates this repression ipsilaterally. Our data reveal a Six3-dependent mechanism for establishment of correct brain laterality and provide an entry point to understanding the genetic regulation of Nodal signaling in the brain.


Assuntos
Encéfalo/embriologia , Dominância Cerebral/fisiologia , Desenvolvimento Embrionário/fisiologia , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Peixe-Zebra/embriologia , Animais , Epistasia Genética , Epitálamo/embriologia , Proteína Nodal , Fator de Crescimento Transformador beta/antagonistas & inibidores , Peixe-Zebra/genética , Proteína Homeobox SIX3
9.
Neuron ; 55(3): 393-405, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17678853

RESUMO

Nodal activity in the left lateral plate mesoderm (LPM) is required to activate left-sided Nodal signaling in the epithalamic region of the zebrafish forebrain. Epithalamic Nodal signaling subsequently determines the laterality of neuroanatomical asymmetries. We show that overactivation of Wnt/Axin1/beta-catenin signaling during late gastrulation leads to bilateral epithalamic expression of Nodal pathway genes independently of LPM Nodal signaling. This is consistent with a model whereby epithalamic Nodal signaling is normally bilaterally repressed, with Nodal signaling from the LPM unilaterally alleviating repression. We suggest that Wnt signaling regulates the establishment of the bilateral repression. We identify a second role for the Wnt pathway in the left/right regulation of LPM Nodal pathway gene expression, and finally, we show that at later stages Axin1 is required for the elaboration of concordant neuroanatomical asymmetries.


Assuntos
Dominância Cerebral/fisiologia , Prosencéfalo/embriologia , Proteínas Repressoras/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Wnt/fisiologia , Peixe-Zebra/embriologia , beta Catenina/fisiologia , Animais , Proteína Axina , Epitálamo/embriologia , Epitálamo/metabolismo , Lateralidade Funcional/fisiologia , Gástrula/fisiologia , Expressão Gênica , Habenula/citologia , Habenula/embriologia , Mesoderma/metabolismo , Mutação , Neurônios/citologia , Proteína Nodal , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Distribuição Tecidual/fisiologia , Fator de Crescimento Transformador beta/genética
10.
Semin Cell Dev Biol ; 20(4): 498-509, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19560050

RESUMO

The epithalamus of zebrafish presents the best-studied case of directional asymmetry in the vertebrate brain. Epithalamic asymmetries are coupled to visceral asymmetry and include left-sided migration of a single midline structure (the parapineal organ) and asymmetric differentiation of paired bilateral nuclei (habenulae). The mechanisms underlying the establishment of epithalamic asymmetry involve the interplay between anti-symmetry and laterality signals to guide asymmetric parapineal migration. This event triggers the amplification of habenular asymmetries and the subsequent organisation of lateralised circuits in the interpeduncular nucleus. This review will summarise our current understanding on these processes and propose a sequential modular organisation of the events controlling the development of asymmetry along the parapineal-habenular-interpeduncular axis.


Assuntos
Epitálamo/embriologia , Lateralidade Funcional , Animais , Habenula , Peixe-Zebra
11.
Semin Cell Dev Biol ; 20(4): 491-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19084075

RESUMO

The human brain exhibits notable asymmetries. Little is known about these symmetry deviations; however scientists are beginning to understand them by employing the lateralized zebrafish epithalamus as a model. The zebrafish epithalamus consists of the pineal and parapineal organs and paired habenular nuclei located bilateral to the pineal complex. While zebrafish pineal and parapineal organs arise from a common population of cells, parapineal cells undergo a separate program that allows them to migrate left of the pineal anlage. Studying the processes that lead to brain laterality in zebrafish will allow a better understanding of how human brain laterality is established.


Assuntos
Encéfalo/embriologia , Epitálamo/embriologia , Lateralidade Funcional , Animais , Desenvolvimento Embrionário , Peixe-Zebra
12.
Cell Tissue Res ; 339(2): 383-95, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20012322

RESUMO

The subcommissural organ (SCO) is an ependymal differentiation located in the diencephalon under the posterior commissure (PC). SCO-spondin, a glycoprotein released by the SCO, belongs to the thrombospondin superfamily and shares molecular domains with axonal pathfinding molecules. Several lines of evidence suggest a relationship between the SCO and the development of the PC in the chick: (1) their close location to each other, (2) their differentiation at the same developmental stage in the chick, (3) the abnormal PC found in null mutants lacking an SCO and (4) the release by the SCO of SCO-spondin. By application of DiI crystals in the PC of chick embryos, we have identified the neurons that give rise to the PC. Labelling is confined to the magnocellular nucleus of the PC (MNPC). To gain insight into the role of the SCO in PC development, coculture experiments of explants of the MNPC region (MNPCr) from embryos at embryonic day 4 (E4) with SCO explants from E4 or E13 embryos have been performed and the neurite outgrowth from the MNPCr explants has been analysed. In the case of coculture of E4 MNPCr with E4 SCO, the number of neurites growing from the MNPCr is higher at the side facing the SCO. However, when E4 MNPCr and E13 SCO are cocultured, the neurites grow mostly at the side opposite to the SCO. These data suggest that, at early stages of development, the SCO releases some attractive or permissive molecule(s) for the growing of the PC, whereas at later stages, the SCO has a repulsive effect over neurites arising from MNPCr.


Assuntos
Comunicação Celular , Epitálamo/embriologia , Neurônios/citologia , Órgão Subcomissural/embriologia , Animais , Diferenciação Celular , Embrião de Galinha , Técnicas de Cocultura , Epitálamo/citologia , Imuno-Histoquímica , Neuritos/fisiologia , Órgão Subcomissural/citologia , Técnicas de Cultura de Tecidos
13.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498774

RESUMO

Coordinated migration of cell collectives is important during embryonic development and relies on cells integrating multiple mechanical and chemical cues. Recently, we described that focal activation of the FGF pathway promotes the migration of the parapineal in the zebrafish epithalamus. How FGF activity is restricted to leading cells in this system is, however, unclear. Here, we address the role of Notch signaling in modulating FGF activity within the parapineal. While Notch loss-of-function results in an increased number of parapineal cells activating the FGF pathway, global activation of Notch signaling decreases it; both contexts result in defects in parapineal migration and specification. Decreasing or increasing FGF signaling in a Notch loss-of-function context respectively rescues or aggravates parapineal migration defects without affecting parapineal cells specification. We propose that Notch signaling controls the migration of the parapineal through its capacity to restrict FGF pathway activation to a few leading cells.


Assuntos
Movimento Celular , Epitálamo/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes
14.
J Comp Neurol ; 421(4): 481-514, 2000 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-10842210

RESUMO

The expression of four cadherins (cadherin-6B, cadherin-7, R-cadherin, and N-cadherin) was mapped in the diencephalon of chicken embryos at 11 days and 15 days of incubation and was compared with Nissl stains and radial glial topology. Results showed that each cadherin is expressed in a restricted manner by a different set of embryonic divisions, brain nuclei, and their subregions. An analysis of the segmental organization based on the prosomeric model indicated that, in the mature diencephalon, each prosomere persists and forms a coherent domain of gray matter extending across the entire transverse dimension of the neural tube, from the ventricular surface to the pial surface. Moreover, the results suggest the presence of a novel set of secondary subdivisions for the dorsal thalamus (dorsal, intermediate, and ventral tiers and anteroventral subregion). They also confirm the presence of secondary subdivisions in the pretectum (commissural, juxtacommissural, and precommissural). At most of the borders between the prosomeres and their secondary subdivisions, changes in radial glial fiber density were observed. The diencephalic brain nuclei that derive from each of the subdivisions were determined. In addition, a number of previously less well-characterized gray matter regions of the diencephalon were defined in more detail based on the mapping of cadherin expression. The results demonstrate in detail how the divisions of the early embryonic diencephalon persist and transform into mature gray matter architecture during brain morphogenesis, and they support the hypothesis that cadherins play a role in this process by providing a framework of potentially adhesive specificities.


Assuntos
Caderinas/metabolismo , Diencéfalo/citologia , Diencéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Neurônios/metabolismo , Animais , Mapeamento Encefálico , Embrião de Galinha , Diencéfalo/metabolismo , Epitálamo/citologia , Epitálamo/embriologia , Epitálamo/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Tálamo/citologia , Tálamo/embriologia , Tálamo/metabolismo
15.
Gene Expr Patterns ; 4(1): 53-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14678828

RESUMO

We describe the isolation of zebrafish growth factor independent 1 (gfi1) and present an analysis of its pattern of expression during early development. As with its murine homologue, gfi1 expression is detected in the ganglion cells of the neural retina and in developing hair cells of the ear. In keeping with a role in the development of sensory hair cells, gfi1 is also expressed in neuromasts of the anterior and posterior lateral line system. Finally, gfi1 is expressed in the developing epithalamus in the dorsal diencephalon where its transcription is restricted to the parapineal.


Assuntos
Proteínas de Ligação a DNA/genética , Epitálamo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândula Pineal/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Epitálamo/embriologia , Hibridização In Situ , Dados de Sequência Molecular , Glândula Pineal/embriologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
16.
Development ; 132(21): 4869-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16207761

RESUMO

The zebrafish epithalamus, consisting of the pineal complex and flanking dorsal habenular nuclei, provides a valuable model for exploring how left-right differences could arise in the vertebrate brain. The parapineal lies to the left of the pineal and the left habenula is larger, has expanded dense neuropil, and distinct patterns of gene expression from the right habenula. Under the influence of Nodal signaling, positioning of the parapineal sets the direction of habenular asymmetry and thereby determines the left-right origin of habenular projections onto the midbrain target, the interpeduncular nucleus (IPN). In zebrafish with parapineal reversal, neurons from the left habenula project to a more limited ventral IPN region where right habenular axons would normally project. Conversely, efferents from the right habenula adopt a more extensive dorsoventral IPN projection pattern typical of left habenular neurons. Three members of the leftover-related KCTD (potassium channel tetramerization domain containing) gene family are expressed differently by the left and right habenula, in patterns that define asymmetric subnuclei. Molecular asymmetry extends to protein levels in habenular efferents, providing additional evidence that left and right axons terminate within different dorsoventral regions of the midbrain target. Laser-mediated ablation of the parapineal disrupts habenular asymmetry and consequently alters the dorsoventral distribution of innervating axons. The results demonstrate that laterality of the dorsal forebrain influences the formation of midbrain connections and their molecular properties.


Assuntos
Padronização Corporal , Epitálamo/embriologia , Mesencéfalo/embriologia , Sistema Nervoso/embriologia , Animais , Embrião não Mamífero , Epitálamo/fisiologia , Habenula/embriologia , Neurônios , Glândula Pineal/embriologia , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA