Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 691, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004696

RESUMO

BACKGROUND: Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS: Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS: The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.


Assuntos
Erysipelothrix , Regiões Árticas , Erysipelothrix/genética , Erysipelothrix/patogenicidade , Erysipelothrix/isolamento & purificação , Canadá , Animais , Virulência/genética , Genômica , Genoma Bacteriano , Filogenia , Infecções por Erysipelothrix/microbiologia , Fatores de Virulência/genética , Estudo de Associação Genômica Ampla , Ilhas Genômicas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38359084

RESUMO

Infectious diseases threaten endangered species, particularly in small isolated populations. Seabird populations on the remote Amsterdam Island in the Indian Ocean have been in decline for the past three decades, with avian cholera caused by Pasteurella multocida proposed as the primary driver. However, Erysipelothrix species have also been sporadically detected from albatrosses on Amsterdam Island and may be contributing to some of the observed mortality. In this study, we genomically characterized 16 Erysipelothrix species isolates obtained from three Indian yellow-nosed albatross (Thalassarche carteri) chick carcasses in 2019. Histological analyses suggest that they died of bacterial septicaemia. Two isolates were sequenced using both Illumina short-read and MinION long-read approaches, which - following hybrid assembly - resulted in closed circular genomes. Mapping of Illumina reads from the remaining isolates to one of these new reference genomes revealed that all 16 isolates were closely related, with a maximum of 13 nucleotide differences distinguishing any pair of isolates. The nucleotide diversity of isolates obtained from the same or different carcasses was similar, suggesting all three chicks were likely infected from a common source. These genomes were compared with a global collection of genomes from Erysipelothrix rhusiopathiae and other species from the same genus. The isolates from albatrosses were phylogenetically distinct, sharing a most recent common ancestor with E. rhusiopathiae. Based on phylogenomic analysis and standard thresholds for average nucleotide identity and digital DNA-DNA hybridization, these isolates represent a novel Erysipelothrix species, for which we propose the name Erysipelothrix amsterdamensis sp. nov. The type strain is A18Y020dT (=CIP 112216T=DSM 115297T). The implications of this bacterium for albatross conservation will require further study.


Assuntos
Erysipelothrix , Animais , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Galinhas , Nucleotídeos
3.
Dis Aquat Organ ; 157: 31-43, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299848

RESUMO

Infections by Erysipelothrix rhusiopathiae occur in domestic animals and cause the disease known as 'erysipelas'. The ubiquity of Erysipelothrix spp. makes infection possible in a wide range of vertebrates and invertebrates. Cetaceans are highly susceptible to erysipelas, especially those under human care. The number of cases documented in wild cetaceans is low, the pathogenesis is incompletely understood, and the full spectrum of lesions is not well defined. The possible serotypes and species of the genus that can cause disease are unknown. In October 2022, a common bottlenose dolphin Tursiops truncatus stranded in Vilassar de Mar (Catalonia) showing skin lesions consistent with 'diamond skin disease', a characteristic lesion of erysipelas shared by swine and cetaceans. Necropsy was performed following standardized procedures, and multiple samples were taken for histopathology and bacteriology. Erysipelothrix sp. grew in pure culture in many tissue samples. Genetic characterization by multi-locus sequence analysis identified the species as E. rhusiopathiae. Histologically, the main lesions were an intense suppurative vasculitis of leptomeningeal arteries and veins with abundant intramural Gram-positive bacilli and meningeal hemorrhages. Meningeal lesions were considered the cause of death. The affected skin showed moderate suppurative dermatitis. Herein we document a case of erysipelas in a Mediterranean common bottlenose dolphin with unusual lesions in the leptomeningeal vessels and marked skin tropism. To our knowledge, this is the first case of severe brain involvement in erysipelas in a cetacean. We also provide a review of available cases in wild cetaceans, to highlight the characteristics of the disease and improve future diagnosis.


Assuntos
Golfinho Nariz-de-Garrafa , Erisipela , Infecções por Erysipelothrix , Erysipelothrix , Animais , Encéfalo , Erisipela/veterinária , Infecções por Erysipelothrix/microbiologia
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731857

RESUMO

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Assuntos
Erysipelothrix , Gansos , Prófagos , Animais , Gansos/microbiologia , Polônia , Erysipelothrix/genética , Prófagos/genética , Antibacterianos/farmacologia , Infecções por Erysipelothrix/microbiologia , Infecções por Erysipelothrix/genética , Doenças das Aves Domésticas/microbiologia , Sequenciamento Completo do Genoma , Genoma Bacteriano , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Conjugação Genética , Plasmídeos/genética
5.
Emerg Infect Dis ; 29(4): 835-838, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958025

RESUMO

In August 2021, a large-scale mortality event affected harbor porpoises (Phocoena phocoena) in the Netherlands. Pathology and ancillary testing of 22 animals indicated that the most likely cause of death was Erysipelothrix rhusiopathiae infection. This zoonotic agent poses a health hazard for cetaceans and possibly for persons handling cetacean carcasses.


Assuntos
Erysipelothrix , Phocoena , Animais , Países Baixos/epidemiologia
6.
Emerg Infect Dis ; 29(12): 2561-2563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987589

RESUMO

We diagnosed fatal Erysipelothrix rhusiopathiae sepsis in 3 stranded bottlenose dolphins (Tursiops truncatus) during summer 2022, in San Diego, California, USA. The previously undetected disease in this relatively small, regional population of dolphins most likely indicates an environmental or biological change in the coastal ocean or organisms.


Assuntos
Golfinho Nariz-de-Garrafa , Erisipela , Erysipelothrix , Sepse , Animais , California/epidemiologia
7.
Cell Physiol Biochem ; 57(5): 379-394, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37815427

RESUMO

BACKGROUND/AIMS: Swine erysipelas is a disease caused by Erysipelothrix rhusiopathiae, a Gram-positive bacillus, which has great economic importance because it leads to the loss of the swine herd. To control this disease, animals are immunized with a cellular vaccine of killed or attenuated E. rhusiopathiae, but even with herd vaccination, cases of swine erysipelas outbreaks have been reported in the United States, China and Japan, leading to the search for other antigenic components of the bacteria that may promote greater protection against E. rhusiopathiae. The surface protein SpaA from E. rhusiopathiae has been shown to be a candidate to constitute a subunit vaccine, since it has already been reported to induce a host immune response against the bacterium. DnaK, a hsp70 molecular chaperone, also seems to be a good candidate in the composition of a vaccine, as it has been demonstrated to be an antigenic protein of the bacteria. METHODS: This work evaluated the immunogenicity and protection induced by the E. rhusiopathiaee SpaA and DnaK recombinant proteins in a murine model, by intramuscular administration to mice with two doses of 100 µg at 21-day interval between them. The candidate proteins were tested either separately and together, compared with the commercial vaccine and the non-vaccination condition, and mice were challenged with a virulent strain of E. rhusiopathiae. Serum was collected to assess the produced antibodies and peripheral blood cells, whereas spleen and kidney tissues were assayed for E. rhusiopathiae presence by colony counting. RESULTS: A survival curve of the animals was performed, which confirmed the protection induced by the proteins. IgG antibodies increased in the animal serum inoculated with the proteins when compared to the control, and a significant delay in disease symptoms was observed. CONCLUSION: These results suggest that E. rhusiopathiae DnaK and SpaA are immunogenic in mice and interfere with the disease development.


Assuntos
Erysipelothrix , Erisipela Suína , Vacinas , Animais , Camundongos , Suínos , Erysipelothrix/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Erisipela Suína/microbiologia , Modelos Animais de Doenças , Proteínas Recombinantes
8.
Rev Med Chil ; 151(2): 250-254, 2023 Feb.
Artigo em Espanhol | MEDLINE | ID: mdl-38293860

RESUMO

The microbiology of infective endocarditis (IE) varies in different populations and depends on public health conditions and socioeconomic status. In low-income countries, oral Streptococci affect hearts with rheumatic valve disease in patients with poor dentition. In high-income countries, Staphylococci are the most common cause, affecting elderly and immunocompromised patients, or those with invasive devices. Gram - positive bacili as IE pathogens are unusual. Erysipelothrix rhusiopathiae is a Gram positive bacili. It causes skin diseases in domestic and farm animals, but in humans, is a very unusual pathogen. This infection is considered a zoonosis, since most cases are linked to direct contact with vector animals. We report a 62 year-old male patient with a history of exposure to animals, who developed an infective endocarditis with severe bivalve regurgitation and septic shock, requiring antimicrobials and surgical resolution. Erysipelothrix rhusiopathiae was isolated from blood and valve vegetation cultures. The patient had a successful evolution and was discharged from the hospital.


Assuntos
Endocardite Bacteriana , Endocardite , Infecções por Erysipelothrix , Erysipelothrix , Masculino , Animais , Humanos , Idoso , Pessoa de Meia-Idade , Infecções por Erysipelothrix/diagnóstico , Infecções por Erysipelothrix/microbiologia , Endocardite Bacteriana/microbiologia , Zoonoses
9.
Emerg Infect Dis ; 28(8): 1650-1658, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876625

RESUMO

Several caribou (Rangifer tarandus) populations have been declining concurrently with increases in infectious diseases in the Arctic. Erysipelothrix rhusiopathiae, a zoonotic bacterium, was first described in 2015 as a notable cause of illness and death among several Arctic wildlife species. We investigated epidemiologic and environmental factors associated with the seroprevalence of E. rhusiopathiae in the Arctic and found that seropositivity was highest during warmer months, peaking in September, and was highest among adult males. Summer seroprevalence increases tracked with the oestrid index from the previous year, icing and snowing events, and precipitation from the same year but decreased with growing degree days in the same year. Seroprevalence of E. rhusiopathiae varied more during the later years of the study. Our findings provide key insights into the influence of environmental factors on disease prevalence that can be instrumental for anticipating and mitigating diseases associated with climate change among Arctic wildlife and human populations.


Assuntos
Erysipelothrix , Rena , Animais , Animais Selvagens , Regiões Árticas , Humanos , Masculino , Estações do Ano , Estudos Soroepidemiológicos
10.
Artigo em Inglês | MEDLINE | ID: mdl-35776769

RESUMO

Seven genotypically distinct strains assigned to the genus Erysipelothrix were isolated in different laboratories from several animal sources. Strain D17_0559-3-2-1T and three further strains were isolated from samples of duck, pig and goose. The strains had >99 % 16S rRNA gene sequence similarity to each other and to strain VA92-K48T and two further strains isolated from samples of medical leech and a turtle. The closest related type strains to the seven strains were those of Erysipelothrix inopinata (96.74 %) and Erysipelothrix rhusiopathiae (95.93 %). Average nucleotide identity, amino acid identity and in silico DNA-DNA hybridization results showed that the strains represented two separate novel species. One further phylogenetically distinct strain (165301687T) was isolated from fox urine. The strain had highest 16S rRNA gene sequence similarity to the type strains of Erysipelothrix tonsillarum (95.67 %), followed by Erysipelothrix piscisicarius (95.58 %) and Erysipelothrix larvae (94.22 %) and represented a further novel species. Chemotaxonomic and physiological data of the novel strains were assessed, but failed to unequivocally differentiate the novel species from existing members of the genus. MALDI-TOF MS data proved the discrimination of at least strain 165301687T from all currently described species. Based on the presented phylogenomic and physiological data, we propose three novel species, Erysipelothrix anatis sp. nov. with strain D17_0559-3-2-1T (=DSM 111258T= CIP 111884T=CCM 9044T) as type strain, Erysipelothrix aquatica sp. nov. with strain VA92-K48T (=DSM 106012T=LMG 30351T=CIP 111492T) as type strain and Erysipelothrix urinaevulpis sp. nov. with strain 165301687T (=DSM 106013T= LMG 30352T= CIP 111494T) as type strain.


Assuntos
Besouros , Erysipelothrix , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Erysipelothrix/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
11.
Vet Res ; 53(1): 105, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510306

RESUMO

Erysipelas, caused by infection with Erysipelothrix rhusiopathiae (ER) is an important emerging disease in laying hens. We have earlier observed prominent mannose-binding lectin (MBL) acute phase responses in experimentally ER infected chickens. The present study aimed to further examine immune responses to ER by using chickens selectively bred for high (L10H) and low (L10L) serum MBL levels. Chickens were infected with ER at 3 weeks of age and immune parameters and bacterial load were monitored in blood until day 18 after infection. Blood and spleen leukocytes collected on day 18 were stimulated in vitro with ER antigens and blast transformation of different T-cell populations was assessed. The ER infection gave a very varied outcome and no clear differences were observed between L10H and L10L chickens with respect to leukocyte counts, bacterial load or clinical outcome. Nonetheless, rapid innate responses, e.g., heterophilia and increased serum MBL levels were noted in bacteraemic chickens. All ER infected chickens also showed transient increased expression of mannose receptor MRC1L-B and decreased expression of major histocompatibility complex II on monocytes day 1 after infection indicating monocyte activation or relocation. In vitro ER stimulation showed antigen specific blast transformation of CD4+, TCRγ/δ-CD8αß+ and TCRγ/δ+CD8αß+ spleen cells from all infected chickens. For CD4+ and TCRγ/δ-CD8αß+ cells the proportions of blast transformed cells were significantly higher for samples from L10L chickens than those for samples from L10H chickens. This is the first observation of ER-specific T-cells in chickens and interestingly a Th1-type response comprising cytotoxic T-cells was indicated.


Assuntos
Infecções por Erysipelothrix , Erysipelothrix , Doenças das Aves Domésticas , Animais , Feminino , Galinhas , Infecções por Erysipelothrix/microbiologia , Contagem de Leucócitos/veterinária
12.
Eur J Nutr ; 60(6): 3279-3301, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33591390

RESUMO

PURPOSE: Obesity has been related to intestinal dysbiosis and the modification of gut microbiota composition by dietary strategies becomes a promising strategy to help manage obesity. The aim of the current study was to evaluate the effect of two weight-loss diets on the composition and functional profile of gut microbiota. METHODS: 55 men and 124 women with BMI > 25 kg/m2 were randomly assigned to moderately high-protein (MHP) or low-fat (LF) diet. Differences in fecal bacteria abundance (based on 16 s rRNA sequencing) between before and after 4 months of calorie restriction was analyzed using EdgeR tool in MicrobiomeAnalyst platform. Bacterial functional profile was predicted using Tax4Fun and metagenomeSeq analysis. Significant KEGG Orthology (KO) terms were selected for the metabolomic study using chromatography. RESULTS: After the intervention, MHP-men showed a significant decrease in Negativicutes, Selenomonadales, Dielma and Dielma fastidiosa. LF-men showed a significant increase in Bacilli, Lactobacillales, Christensenellaceae, Peptococcaceae, and Streptococcaceae, Peptococcus, Streptococcus and Christensenella, Duncaniella dubosii_CP039396_93.49%, Roseburia sp_AB744234_98.96% and Alistipes inops_KJ572413_99.57%. MHP-women increased Pasteurellales, Phascolarctobacterium succinatutens, Ruthenibacterium lactatiformans_LR215981_99.55% and decreased in Phascolarctobacterium succinatutens_NR112902_99.56%. Finally, LF-women presented a significant decrease in Bacteroides clarus and Erysipelothrix inopinata_CP060715_84.4%. Surprisingly, no matching bacterial changes were found between these four groups. A total of 42 KO, 10 metabolic pathways and 107 related metabolites related were found implicated in these bacterial changes. Seven metabolites were confirmed in plasma. CONCLUSION: Weight-loss-related-changes in gut microbiome composition and the functional profile occur in a sex- and diet-related manner, showing that women and men could differentially benefit from the consumption of MHP and LF diets. TRIAL REGISTRATION: NCT02737267, 10th March 2016 retrospectively registered.


Assuntos
Microbioma Gastrointestinal , Bacteroides , Bacteroidetes , Clostridiales , Dieta , Dieta Redutora , Erysipelothrix , Fezes , Feminino , Firmicutes , Humanos , Masculino , Veillonellaceae , Redução de Peso
13.
BMC Vet Res ; 17(1): 111, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676514

RESUMO

BACKGROUND: Erysipelas, caused by Erysipelothrix rhusiopathiae (ER), is an important emerging disease in free-range and organic egg-production. The aim of the present study was to assess if quantification of ER specific IgY titers may aid the understanding of erysipelas in commercial laying hens. The methodology was validated with sequentially collected sera from experimentally ER infected SPF-chickens and subsequently applied on sera from Swedish commercial laying hens collected during and after outbreaks of erysipelas or collected at slaughter from healthy hens housed in furnished cages, barn production or in organic production (with outdoor access). RESULTS: In experimentally infected SPF-chickens, titers to ER were significantly increased approximately one week after infection while IgY to ER in uninfected age-matched controls remained low. Also chickens infected with low doses of ER, not displaying clinical signs of disease and with low recovery of ER in blood samples showed high titers of IgY to ER. For laying hens during and after erysipelas outbreaks the majority of samples were considered positive for antibodies to ER with a large variation in levels of IgY titers to ER between individuals. For healthy laying hens at slaughter all samples were deemed positive for antibodies to ER. An influence of flock on levels of IgY titers to ER was observed for both healthy hens and hens during erysipelas outbreaks. For healthy laying hens at slaughter no influence of the housing systems included in the study, history of erysipelas outbreaks at the farm or vaccination on levels of IgY titers to ER was noticed. CONCLUSIONS: Taken together, these results show that high numbers of commercial laying hens showed high IgY titers to ER, comparable to those elicited by experimental ER infection, indicating that ER or bacteria that raises antibodies that cross-react with ER are common in this environment.


Assuntos
Infecções por Erysipelothrix/epidemiologia , Imunoglobulinas/sangue , Doenças das Aves Domésticas/imunologia , Animais , Galinhas , Erysipelothrix/imunologia , Erysipelothrix/isolamento & purificação , Infecções por Erysipelothrix/imunologia , Feminino , Abrigo para Animais , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Suécia/epidemiologia
14.
Curr Microbiol ; 78(1): 55-66, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33145611

RESUMO

Erysipelothrix rhusiopathiae causes swine erysipelas (SE), which results in considerable economic loss on pig farms. During SE outbreaks that occurred sporadically from 2008 to 2011 in Japan, new E. rhusiopathiae strains were isolated with a specific surface protective antigen (Spa)A protein characterized by methionine at position 203 and isoleucine at position 257 (M203/I257 SpaA type). To determine whether strains with the M203/I257 SpaA type are still prevalent in Japan, we collected 79 strains of E. rhusiopathiae from pigs showing various SE symptoms from 2012 to 2019 and classified them based on serovar typing, spaA gene sequence analysis, and lineage typing. We found that the majority of recent E. rhusiopathiae strains (59/79) belonged to the serovar 1a strain, and that the M203/I257 SpaA type (56/59) was predominant continuing from 2008 to 2011. Furthermore, serovar 1a strains with IVb-1 and IVb-2 lineages that had been isolated in specific regions of Japan were no longer local but were found across Japan. The pathogenicity of recent isolates tested in mice was not significantly changed when compared to that of previously isolated strains. Our results suggest that recent SE outbreaks were not due to changes in the SpaA protein or to altered virulence of E. rhusiopathiae but were rather caused by the persistent presence of E. rhusiopathiae with the M203/I257 SpaA type.


Assuntos
Erysipelothrix , Erisipela Suína , Animais , Erysipelothrix/genética , Japão , Camundongos , Sorogrupo , Suínos , Virulência
15.
Dis Aquat Organ ; 145: 173-184, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263732

RESUMO

Microbiology records for 1127 cetaceans stranded on English and Welsh beaches and examined at the Institute of Zoology between 1990 and 2019 were reviewed to identify cases of Erysipelothrix rhusiopathiae, an uncommon but potentially fatal zoonotic pathogen. Once cases were identified, prevalence was calculated, corresponding postmortem reports were reviewed, common gross and histopathological findings were identified, and antibiotic susceptibilities were determined. Overall prevalence for E. rhusiopathiae was 0.62% (7/1127; 95% CI: 0.30-1.28%). It was isolated from 3 bottlenose dolphins Tursiops truncatus, 3 harbor porpoises Phocoena phocoena, and 1 short-beaked common dolphin Delphinus delphis, with a prevalence of 21.4% (3/14; 95% CI: 7.6-47.9%), 0.39% (3/779; 95% CI: 0.13-1.13%), and 0.47% (1/212; 95% CI: 0.08-2.62%) for each species, respectively. E. rhusiopathiae resulted in septicemia in all cases from which it was isolated. Gross necropsy findings included pulmonary edema (5/7), hemorrhage (5/7) and/or congestion of various organs (4/7), and serosanguineous effusion (3/7; pericardial: 3/7, pleural: 2/6, abdominal: 2/6). Congestion (5/5), bacterial emboli (4/5), and hemorrhage (4/5) were commonly observed on histopathology, and acute renal tubular injury (2/5) and pulmonary edema (2/5) were occasionally observed. Routine bacterial cultures were vital in identifying E. rhusiopathiae, since gross lesions were often subtle and nonspecific. The liver, kidney, and brain were key organs from which E. rhusiopathiae was consistently isolated. Antibiotic resistance was uncommon and was only observed for amikacin and trimethoprim sulfonamide. Penicillins were consistently effective, along with fluoroquinolones, macrolides, clindamycin, cephalexin, and oxytetracycline.


Assuntos
Golfinho Nariz-de-Garrafa , Infecções por Erysipelothrix , Erysipelothrix , Animais , Inglaterra , Infecções por Erysipelothrix/epidemiologia , País de Gales
16.
J Fish Dis ; 44(11): 1681-1688, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34251051

RESUMO

Erysipelothrix piscisicarius is an emerging bacterial pathogen and the aetiologic agent of piscine erysipelosis, a recently recognized disease of ornamental fish. However, little is known regarding the dynamics of infection in fish. The purpose of this study was to gain a better understanding of the pathogenesis of piscine erysipelosis in the tiger barb (Puntigrus tetrazona) by investigating tissue tropisms and responses to bacterial dissemination following immersion challenge with a virulent strain recovered from diseased fish. The challenge resulted in 83% mortality by day 16. Erysipelothrix piscisicarius DNA was first detected in the skin using quantitative PCR, and bacteria were visualized in association with microscopic lesions on day 4. By day 8, E. piscisicarius DNA was further detected in intestines, hearts, spleens, gills and skin; parenchymal organs were largely spared. The data suggest a primary cutaneous portal of entry and tropism for collagenous tissues, particularly those within vascular walls. Initial spread occurs directly from the dermis into interstitial areas of skeletal muscle, then centrally to the peritoneum and coelomic cavity following collagenous tissue pathways. Although histopathology revealed widespread bacterial dissemination over time, the severity of skin and muscle lesions with high levels of bacterial DNA identifies these tissues as primary targets of infection.


Assuntos
Cyprinidae/microbiologia , Infecções por Erysipelothrix/patologia , Erysipelothrix/patogenicidade , Doenças dos Peixes/microbiologia , Animais , DNA Bacteriano/isolamento & purificação , Doenças dos Peixes/patologia
17.
J Clin Microbiol ; 58(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32269099

RESUMO

The Gram-positive bacterium Erysipelothrix rhusiopathiae is a zoonotic pathogen that causes erysipelas in a wide range of mammalian and avian species. Historically, E. rhusiopathiae has been differentiated from other Erysipelothrix species by serotyping. Among 28 serovars of Erysipelothrix species, specific serovars, namely, 1a, 1b, and 2 of E. rhusiopathiae, are associated mainly with the disease in pigs, poultry, and humans; however, other serovar strains are often simultaneously isolated from diseased and healthy animals, indicating the importance of isolate serotyping for epidemiology. The traditional serotyping protocol, which uses heat-stable peptidoglycan antigens and type-specific rabbit antisera in an agar-gel precipitation test, is time-consuming and labor-intensive. To develop a rapid serotyping scheme, we analyzed sequences of the 12- to 22-kb chromosomal region, which corresponds to the genetic region responsible for virulence of serovar 1a and 2 strains of E. rhusiopathiae, of the 28 serovars of Erysipelothrix species. We confirmed that the serovar 13 strain lacks the genomic region and that some serovar strains possess very similar or the same genetic structure, prohibiting differentiation of the serovars. We created 4 multiplex PCR sets allowing the simultaneous detection and differentiation of the majority of Erysipelothrix serovars. Together with a previously reported multiplex PCR that can differentiate serovars 1a, 1b, 2, and 5, the multiplex PCR-based assay developed in this study covers all but one (serovar 13) of the reported serovars of Erysipelothrix species and should be a valuable tool for etiological as well as epidemiological studies of Erysipelothrix infections.


Assuntos
Infecções por Erysipelothrix , Erysipelothrix , Animais , Erysipelothrix/genética , Infecções por Erysipelothrix/diagnóstico , Reação em Cadeia da Polimerase Multiplex , Coelhos , Sorogrupo , Sorotipagem , Suínos
18.
Int J Syst Evol Microbiol ; 70(2): 857-867, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31682217

RESUMO

A recently described emergent disease of ornamental fish has been associated with an Erysipelothrix species positive for the surface protective antigen (spa) C gene. Whole genome sequencing was performed on five spaC Erysipelothrix isolates from diseased ornamental fish. In addition, these spaC Erysipelothrix isolates were compared to spaA-, spaB- and other spaC-positive Erysipelothrix species isolated from terrestrial and marine mammals, birds and fish using multi-locus sequence analysis (MLSA). The genomes of fish pathogenic spaC isolates were genetically distinct from Erysipelothrix rhusiopathiae, sharing 86.61-86.94 % average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of 31.6-32.2 %, but 99.01-99.11 % ANI and 90.8-91.9 % dDDH values with the uncharacterized spaC-positive Erysipelothrix sp. strain 2 isolated from swine. The findings indicate the spaC-positive fish and swine isolates are conspecific and represent a previously unrecognized taxon. While phylogenies inferred from MLSA sequences confirm this conclusion, slight genetic differences between the spaC fish isolates and swine strain 2 were indicated. Bath immersion challenge trials were conducted using tiger barbs (Puntigrus tetrazona) exposed by immersion to 107 c.f.u. ml-1 of three fish pathogenic spaC Erysipelothrix species, and three spaA and two spaB E. rhusiopathiae isolates as a model of infection. Thirty days post-challenge, cumulative mean percentage survival was 37 % for the spaA, 100 % for the spaB and 13 % for the spaC isolates, revealing differences in virulence among the various spa genotypes in fish. Genetic findings and observed differences in virulence demonstrate the fish pathogenic spaC isolates represent a novel species, for which the name Erysipelothrix piscisicarius sp. nov. is proposed. The type strain is E. piscisicarius 15TAL0474T (=NRRL B-65533T=ATCC-TSD-175T=DSM 110099T).


Assuntos
Cyprinidae/microbiologia , Infecções por Erysipelothrix/patologia , Erysipelothrix/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Erysipelothrix/isolamento & purificação , Erysipelothrix/patogenicidade , Ácidos Graxos/química , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Virulência
19.
Vet Res ; 51(1): 114, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928307

RESUMO

Erysipelas, a disease caused by Erysipelothrix rhusiopathiae (ER), is an increasing problem in laying hens housed in cage-free systems. This study aimed to monitor immune responses during ER infection of naïve chickens and chickens vaccinated intra muscularly with a commercial inactivated ER vaccine. Chickens were infected intra muscularly with ER at 30 days of age and blood leukocyte counts, serum levels of mannose binding lectin (MBL) and ER-specific IgY were monitored until the experiment was terminated at day 15 after infection. ER was detected in blood from more chickens and at higher bacterial counts in the naïve group (day 1: 1 of 7 chickens; day 3: 6 of 6 chickens) than in the vaccinated group (day 1: 0 of 7 chickens; day 3: 1 of 6 chickens). During the acute phase of infection transient increases in circulating heterophil numbers and serum MBL levels were detected in all ER infected chickens but these responses were prolonged in chickens from the naïve group compared to vaccinated chickens. Before infection IgY titers to ER in vaccinated chickens did not differ significantly from those of naïve chickens but vaccinated chickens showed significantly increased IgY titers to ER earlier after infection compared to chickens in the naïve group. In conclusion, the ER infection elicited prompt acute innate responses in all chickens. Vaccinated chickens did not have high IgY titers to ER prior to infection but did however show lower levels of bacteraemia and their acute immune responses were of shorter duration.


Assuntos
Galinhas , Infecções por Erysipelothrix/imunologia , Erysipelothrix/fisiologia , Imunidade Inata , Doenças das Aves Domésticas/imunologia , Animais , Proteínas Aviárias/sangue , Infecções por Erysipelothrix/microbiologia , Feminino , Imunoglobulinas/sangue , Contagem de Leucócitos/veterinária , Lectina de Ligação a Manose/sangue , Doenças das Aves Domésticas/microbiologia , Organismos Livres de Patógenos Específicos
20.
BMC Vet Res ; 16(1): 328, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912219

RESUMO

BACKGROUND: Infective endocarditis is a rare but severe condition associated with a high mortality rate in small animal patients. This condition is caused by a microbial (most often bacterial) infection of the valvular portion of the endocardium, from which proliferative and/or erosive lesions on the cardiac valves or immediately adjacent structures develop. The two most commonly affected cardiac valves are the aortic and mitral valves. CASE PRESENTATION: We report the clinical case of a 4-year old male neutered Bull terrier, 27.6 kg, body condition score 4/9, that presented with a 3-months history of pyrexia and general weakness. The patient history also revealed a transient left hind limb lameness (grade 2/4), which coincided with the onset of clinical signs about 3 months before presentation. On physical examination, a left-sided systolic heart murmur (grade 3/6) with the same intensity at the left heart base and apex, and an irregularly irregular heart rhythm were noted. Electrocardiography showed ventricular premature complexes, and echocardiography revealed lesions consistent with endocarditis involving the aortic and mitral valve. Bacterial culture of blood yielded a positive result, and the organism isolated was identified as Erysipelothrix rhusiopathiae. The extended patient history revealed that the dog lived close to a farm housing pigs and other livestock. CONCLUSION: We report a rare case of the premortal diagnosis of infective bacterial endocarditis in a dog due to E. rhusiopathiae infection. Most reports about this condition are from necropsy series. This clinical case report emphasizes that E. rhusiopathiae infection and bacteremia should be considered as a differential diagnosis in dogs with suspected infective endocarditis, especially in dogs living in rural areas with access to livestock and particularly farm pigs. Also, particular emphasis should be placed on the zoonotic potential of this infectious disease.


Assuntos
Doenças do Cão/microbiologia , Endocardite Bacteriana/veterinária , Infecções por Erysipelothrix/diagnóstico , Erysipelothrix/isolamento & purificação , Animais , Valvopatia Aórtica/veterinária , Cães , Ecocardiografia/veterinária , Eletrocardiografia/veterinária , Endocardite Bacteriana/sangue , Endocardite Bacteriana/diagnóstico , Alemanha , Coxeadura Animal , Masculino , Valva Mitral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA