RESUMO
In E. coli K-12, the absence of unphosphorylated PtsN (unphospho-PtsN) has been proposed to cause an L-leucine-sensitive growth phenotype (LeuS) by hyperactivated K+ uptake mediated impairment of the expression of the ilvBN operon, encoding subunits of the L-valine (Val)-sensitive acetohydroxyacid synthase I (AHAS I) that renders residual AHAS activity susceptible to inhibition by Leu and K+. This leads to AHAS insufficiency and a requirement for L-isoleucine (Ile). Herein, we provide an alternate mechanism for the LeuS of the ∆ptsN mutant. Genetic and physiological studies with suppressors of the LeuS indicate that impaired expression of the ilvBN operon jointly caused by the absence of unphospho-PtsN and the presence of Leu coupled to Leu-mediated repression of expression of AHAS III leads to AHAS insufficiency rendering residual AHAS activity susceptible to chronic Val stress that may be generated by exogenous Leu. Hyperactivated K+ uptake and an elevated α-ketobutyrate level mediate elevation of ilvBN expression and alleviate the LeuS. The requirement of unphospho-PtsN as a positive regulator of ilvBN expression may buffer Ile biosynthesis against Leu-mediated AHAS insufficiency and protect AHAS I function from chronic endogenous Val generated by Leu and could be realized in certain environments that impair AHAS function.
Assuntos
Acetolactato Sintase , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Leucina , Óperon , Leucina/metabolismo , Leucina/farmacologia , Acetolactato Sintase/metabolismo , Acetolactato Sintase/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Isoleucina/metabolismo , Valina/metabolismo , Potássio/metabolismo , Fosforilação , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/efeitos dos fármacos , MutaçãoRESUMO
Gemcitabine (2',2'-difluoro-2'-deoxycytidine), a widely used anticancer drug, is considered a gold standard in treating aggressive pancreatic cancers. Gamma-proteobacteria that colonize the pancreatic tumors contribute to chemoresistance against gemcitabine by metabolizing the drug to a less active and deaminated form. The gemcitabine transporters of these bacteria are unknown to date. Furthermore, there is no complete knowledge of the gemcitabine transporters in Escherichia coli or any other related proteobacteria. In this study, we investigate the complement of gemcitabine transporters in E. coli K-12 and two common chemoresistance-related bacteria (Klebsiella pneumoniae and Citrobacter freundii). We found that E. coli K-12 has two high-affinity gemcitabine transporters with distinct specificity properties, namely, NupC and NupG, whereas the gemcitabine transporters of C. freundii and K. pneumoniae include the NupC and NupG orthologs, functionally indistinguishable from their counterparts, and, in K. pneumoniae, one additional NupC variant, designated KpNupC2. All these bacterial transporters have a higher affinity for gemcitabine than their human counterparts. The highest affinity (KM 2.5-3.0 µΜ) is exhibited by NupGs of the bacteria-specific nucleoside-H+ symporter (NHS) family followed by NupCs (KM 10-13 µΜ) of the concentrative nucleoside transporter (CNT) family, 15-100 times higher than the affinities reported for the human gemcitabine transporter hENT1/SLC29A1, which is primarily associated with gemcitabine uptake in the pancreatic adenocarcinoma cells. Our results offer a basis for further insight into the role of specific bacteria in drug availability within tumors and for understanding the structure-function differences of bacterial and human drug transporters.
Assuntos
Desoxicitidina , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/efeitos dos fármacos , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Gammaproteobacteria/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/metabolismoRESUMO
Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.
Assuntos
Antibacterianos , Ciprofloxacina , Curcumina , Fármacos Fotossensibilizantes , Recombinases Rec A , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Recombinases Rec A/metabolismo , Recombinases Rec A/genética , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Fotoquimioterapia/métodos , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Povidona/química , Povidona/farmacologia , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Luz , Proteínas de Ligação a DNARESUMO
Countering the rise of antibiotic-resistant pathogens requires improved understanding of how resistance emerges and spreads in individual species, which are often embedded in complex microbial communities such as the human gut microbiome. Interactions with other microorganisms in such communities might suppress growth and resistance evolution of individual species (e.g., via resource competition) but could also potentially accelerate resistance evolution via horizontal transfer of resistance genes. It remains unclear how these different effects balance out, partly because it is difficult to observe them directly. Here, we used a gut microcosm approach to quantify the effect of three human gut microbiome communities on growth and resistance evolution of a focal strain of Escherichia coli. We found the resident microbial communities not only suppressed growth and colonisation by focal E. coli but also prevented it from evolving antibiotic resistance upon exposure to a beta-lactam antibiotic. With samples from all three human donors, our focal E. coli strain only evolved antibiotic resistance in the absence of the resident microbial community, even though we found resistance genes, including a highly effective resistance plasmid, in resident microbial communities. We identified physical constraints on plasmid transfer that can explain why our focal strain failed to acquire some of these beneficial resistance genes, and we found some chromosomal resistance mutations were only beneficial in the absence of the resident microbiota. This suggests, depending on in situ gene transfer dynamics, interactions with resident microbiota can inhibit antibiotic-resistance evolution of individual species.
Assuntos
Farmacorresistência Bacteriana/fisiologia , Escherichia coli K12/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Mutação , PlasmídeosRESUMO
Polyamines are essential for biofilm formation in Escherichia coli, but it is still unclear which polyamines are primarily responsible for this phenomenon. To address this issue, we constructed a series of E. coli K-12 strains with mutations in genes required for the synthesis and metabolism of polyamines. Disruption of the spermidine synthase gene (speE) caused a severe defect in biofilm formation. This defect was rescued by the addition of spermidine to the medium but not by putrescine or cadaverine. A multidrug/spermidine efflux pump membrane subunit (MdtJ)-deficient strain was anticipated to accumulate more spermidine and result in enhanced biofilm formation compared to the MdtJ+ strain. However, the mdtJ mutation did not affect intracellular spermidine or biofilm concentrations. E. coli has the spermidine acetyltransferase (SpeG) and glutathionylspermidine synthetase/amidase (Gss) to metabolize intracellular spermidine. Under biofilm-forming conditions, not Gss but SpeG plays a major role in decreasing the too-high intracellular spermidine concentrations. Additionally, PotFGHI can function as a compensatory importer of spermidine when PotABCD is absent under biofilm-forming conditions. Last, we report here that, in addition to intracellular spermidine, the periplasmic binding protein (PotD) of the spermidine preferential ABC transporter is essential for stimulating biofilm formation.IMPORTANCE Previous reports have speculated on the effect of polyamines on bacterial biofilm formation. However, the regulation of biofilm formation by polyamines in Escherichia coli has not yet been assessed. The identification of polyamines that stimulate biofilm formation is important for developing novel therapies for biofilm-forming pathogens. This study sheds light on biofilm regulation in E. coli Our findings provide conclusive evidence that only spermidine can stimulate biofilm formation in E. coli cells, not putrescine or cadaverine. Last, ΔpotD inhibits biofilm formation even though the spermidine is synthesized inside the cells from putrescine. Since PotD is significant for biofilm formation and there is no ortholog of the PotABCD transporter in humans, PotD could be a target for the development of biofilm inhibitors.
Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Espermidina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetiltransferases/metabolismo , Amida Sintases/metabolismo , Cadaverina/farmacologia , Meios de Cultura , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Mutação , Óperon , Proteínas Periplásmicas de Ligação/genética , Putrescina/farmacologia , Espermidina/farmacologia , Espermidina Sintase/genética , Espermidina Sintase/metabolismoRESUMO
The tellurium oxyanion tellurate is toxic to living organisms even at low concentrations; however, its mechanism of toxicity is poorly understood. Here, we show that exposure of Escherichia coli K-12 to tellurate results in reduction to elemental tellurium (Te[0]) and the formation of intracellular reactive oxygen species (ROS). Toxicity assays performed with E. coli indicated that pre-oxidation of the intracellular thiol pools increases cellular resistance to tellurate-suggesting that intracellular thiols are important in tellurate toxicity. X-ray absorption spectroscopy experiments demonstrated that cysteine reduces tellurate to elemental tellurium. This redox reaction was found to generate superoxide anions. These results indicate that tellurate reduction to Te(0) by cysteine is a source of ROS in the cytoplasm of tellurate-exposed cells.
Assuntos
Cisteína/metabolismo , Escherichia coli K12/efeitos dos fármacos , Telúrio/farmacologia , Escherichia coli K12/citologia , Escherichia coli K12/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Telúrio/metabolismoRESUMO
(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLß-AKLß-AK)2-NH2 containing ß-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.
Assuntos
Anti-Infecciosos/química , Peptídeos Antimicrobianos/química , Antineoplásicos/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Escherichia coli K12/efeitos dos fármacos , Humanos , Células MCF-7 , Técnicas de Síntese em Fase Sólida , beta-Alanina/análogos & derivados , beta-Alanina/síntese química , beta-Alanina/farmacologiaRESUMO
Many studies have examined the role that conjugation plays in disseminating antibiotic resistance genes in bacteria. However, relatively little research has quantitively examined and modeled the dynamics of conjugation under growing and nongrowing conditions beyond a couple of hours. We therefore examined growing and nongrowing cultures of Escherichia coli over a 24-h period to understand the dynamics of bacterial conjugation in the presence and absence of antibiotics with pUUH239.2, an IncFII plasmid containing multiantibiotic- and metal-resistant genes. Our data indicate that conjugation occurs after E. coli cells divide and before they have transitioned to a nongrowing phase. The result is that there is only a small window of opportunity for E. coli to conjugate with pUUH239.2 under both growing and nongrowing conditions. Only a very small percentage of the donor cells likely are capable of even undergoing conjugation, and not all transconjugants can become donor cells due to molecular regulatory controls and not being in the correct growth phase. Once a growing culture enters stationary phase, the number of capable donor cells decreases rapidly and conjugation slows to produce a plateau. Published models did not provide accurate descriptions of conjugation under nongrowing conditions. We present here a modified modeling approach that accurately describes observed conjugation behavior under growing and nongrowing conditions.IMPORTANCE There has been growing interest in horizontal gene transfer of antibiotic resistance plasmids as the antibiotic resistance crisis has worsened over the years. Most studies examining conjugation of bacterial plasmids focus on growing cultures of bacteria for short periods, but in the environment, most bacteria grow episodically and at much lower rates than in the laboratory. We examined conjugation of an IncFII antibiotic resistance plasmid in E. coli under growing and nongrowing conditions to understand the dynamics of conjugation under which the plasmid is transferred. We found that conjugation occurs in a narrow time frame when E. coli is transitioning from a growing to nongrowing phase and that the conjugation plateau develops because of a lack of capable donor cells in growing cultures. From an environmental aspect, our results suggest that episodic growth in nutrient-depleted environments could result in more conjugation than sustained growth in a nutrient rich environment.
Assuntos
Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli K12/genética , Plasmídeos/fisiologia , Antibacterianos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Plasmídeos/genéticaRESUMO
Rapidly evolving multidrug resistance renders conventional antimicrobial strategies increasingly inefficient. This urges the exploration of alternative strategies with a lower potential of resistance development to control microbial infections. A promising option is antimicrobial photodynamic therapy (aPDT), especially in the setting of wound infections. In this study its effectiveness was tested as a treatment option for polymicrobially infected wounds in both in vitro and in vivo models. First, aPDT was applied to wound-relevant Gram-positive and Gram-negative bacteria in planktonic culture as the standard in vitro test system and compared different media to show a possible dependency of the therapy on the surrounding environment. In a second step, aPDT was investigated in an in vitro model mimicking the wound bed conditions using fibrin-coated culture plates. Finally, we tested aPDT in vivo in a polymicrobial infected wound healing model in immunocompromised BALB/c mice. In vitro, it was shown that the bactericidal effectiveness of aPDT was strongly dependent on the surrounding environment of the phototoxic reaction. In vivo, the significant delay in wound healing induced by polymicrobial infection was drastically diminished by a two-times application of aPDT using 100 µM methylene blue (generally regarded as safe for topical application on human skin) and 24 J cm-2 pulsed red LED light. Our experiments suggest that aPDT is capable of significantly improving wound healing also in complicated polymicrobially infected wound situations.
Assuntos
Antibacterianos/farmacologia , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Modelos Animais de Doenças , Escherichia coli K12/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus capitis/efeitos dos fármacos , Animais , Antibacterianos/química , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/síntese química , Cicatrização/efeitos dos fármacosRESUMO
There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 µg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 µM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.
Assuntos
Antibacterianos/farmacologia , Desidrogenases de Carboidrato/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Pirazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli K12/enzimologia , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-AtividadeRESUMO
Interactions of two newly synthesized and six previously reported benzoxanthene lignans (BXLs), analogues of rare natural products, with DNA/RNA, G-quadruplex and HSA were evaluated by a set of spectrophotometric methods. Presence/absence of methoxy and hydroxy groups on the benzoxanthene core and minor modifications at C-1/C-2 side pendants - presence/absence of phenyl ring and presence/absence of methoxy and hydroxy groups on phenyl ring - influenced the fluorescence changes and the binding strength to double-stranded (ds-) and G-quadruplex structures. In general, compounds without phenyl ring showed stronger fluorescence changes upon binding than phenyl-substituted BXLs. On the other hand, BXLs with an unsubstituted phenyl ring showed the best stabilization effects of G-quadruplex. Circular dichroism spectroscopy results suggest mixed binding mode, groove binding and partial intercalation, to ds-DNA/RNA and end-stacking to top or bottom G-tetrads as the main binding modes of BXLs to those targets. All compounds exhibited micromolar binding affinities toward HSA and an increased protein thermal stability. Moderate to strong antiradical scavenging activity was observed for all BXLs with hydroxy groups at C-6, C-9 and C-10 positions of the benzoxanthene core, except for derivative bearing methoxy groups at these positions. BXLs with unsubstituted or low-substituted phenyl ring and one derivative without phenyl ring showed strong growth inhibition of Gram-positive Staphylococcus aureus. All compounds showed moderate to strong tumor cell growth-inhibitory activity and cytotoxicity.
Assuntos
Antineoplásicos/farmacologia , DNA Tumoral Circulante/química , Lignanas/farmacologia , RNA Neoplásico/química , Albumina Sérica Humana/química , Xantenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli K12/citologia , Escherichia coli K12/efeitos dos fármacos , Humanos , Lignanas/síntese química , Lignanas/química , Estrutura Molecular , Salmonella enterica/citologia , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Xantenos/síntese química , Xantenos/químicaRESUMO
The method of pulsed laser processing with a nanosecond pulse duration was employed to obtain a nanotexture on the surface of copper alloys. The effect of the obtained micro- and nanotexture on the bactericidal properties of the surface upon its contact with suspensions containing of E. coli K12 C600 or K. pneumoniae 811 cells in a nutrient medium were studied. The evolution of cell morphology after on the nanotextured surface was analyzed using scanning electron microscopy, and changes in biological fluid during this contact were studied by mass spectrometry. It was shown that massive death of bacterial cells both in the suspension and on the nanotextured surface was determined by combined toxic effects of the hierarchically textured surface and high concentration of Cu2+ ions in the medium.
Assuntos
Ligas/farmacologia , Antibacterianos/farmacologia , Cobre/farmacologia , Escherichia coli K12/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas/toxicidade , Ligas/química , Ligas/efeitos da radiação , Antibacterianos/química , Antibacterianos/efeitos da radiação , Cobre/química , Cobre/efeitos da radiação , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/ultraestrutura , Lasers , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanopartículas/química , Nanopartículas/efeitos da radiação , Propriedades de SuperfícieRESUMO
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of lipopolysaccharides (LPS) in the Gram-negative bacterial outer membrane. Metabolic labeling of Escherichia coli LPS with 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3 ) has been reported but is inefficient. For optimization, it is important to understand how exogenous Kdo-N3 enters the cytoplasm. Based on similarities between Kdo and sialic acids, we proposed and verified that the sialic acid transporter NanT imports exogenous Kdo-N3 into E. coli. We demonstrated that E. coli ΔnanT were not labeled with Kdo-N3 , while expression of NanT in the ΔnanT mutant restored Kdo-N3 incorporation. Induced NanT expression in a strain lacking Kdo biosynthesis led to higher exogenous Kdo incorporation and restoration of full-length core-LPS, suggesting that NanT also transports Kdo. While Kdo-N3 incorporation was observed in strains having NanT, it was not detected in Pseudomonas aeruginosa and Acinetobacter baumannii, which lack nanT. However, heterologous expression of E. coli NanT in P. aeruginosa enabled Kdo-N3 incorporation and labeling, though this led to abnormal morphology and growth arrest. NanT seems to define which bacteria can be labeled with Kdo-N3 , provides opportunities to enhance Kdo-N3 labeling efficiency and spectrum, and raises the possibility of Kdo biosynthetic bypass where exogenous Kdo is present, perhaps even in vivo.
Assuntos
Azidas/farmacologia , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Açúcares Ácidos/farmacologia , Simportadores/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiologia , Membrana Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Corantes Fluorescentes/farmacologia , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Ácidos Neuramínicos/farmacologia , Transportadores de Ânions Orgânicos/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Simportadores/genéticaRESUMO
When Escherichia coli K-12 is inoculated into rich medium in batch culture, cells experience five phases. While the lag and logarithmic phases are mechanistically fairly well defined, the stationary phase, death phase, and long-term stationary phase are less well understood. Here, we characterize a mechanism of delaying death, a phenomenon we call the "alcohol effect," where the addition of small amounts of certain alcohols prolongs stationary phase for at least 10 days longer than in untreated conditions. We show that the stationary phase is extended when ethanol is added above a minimum threshold concentration. Once ethanol levels fall below a threshold concentration, cells enter the death phase. We also show that the effect is conferred by the addition of straight-chain alcohols 1-propanol, 1-butanol, 1-pentanol, and, to a lesser degree, 1-hexanol. However, methanol, isopropanol, 1-heptanol, and 1-octanol do not delay entry into death phase. Though modulated by RpoS, the alcohol effect does not require RpoS activity or the activities of the AdhE or AdhP alcohol dehydrogenases. Further, we show that ethanol is capable of extending the life span of stationary-phase cultures for non-K-12 E. coli strains and that this effect is caused in part by genes of the glycolate degradation pathway. These data suggest a model where ethanol and other shorter 1-alcohols can serve as signaling molecules, perhaps by modulating patterns of gene expression that normally regulate the transition from stationary phase to death phase.IMPORTANCE In one of the most well-studied organisms in the life sciences, Escherichia coli, we still do not fully understand what causes populations to die. This is largely due to the technological difficulties of studying bacterial cell death. This study provides an avenue to studying how and why E. coli populations, and perhaps other microbes, transition from stationary phase to death phase by exploring how ethanol and other alcohols delay the onset of death. Here, we demonstrate that alcohols are acting as signaling molecules to achieve the delay in death phase. This study not only offers a better understanding of a fundamental process but perhaps also provides a gateway to studying the dynamics between ethanol and microbes in the human gastrointestinal tract.
Assuntos
Álcoois/farmacologia , Escherichia coli K12/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Transcriptoma , Adaptação Fisiológica , Escherichia coli K12/genética , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/genéticaRESUMO
Experimental evolution of Escherichia coli K-12 with benzoate, a partial uncoupler of the proton motive force (PMF), selects for mutations that decrease antibiotic resistance. We conducted experimental evolution in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a strong uncoupler. Cultures were serially diluted daily 1:100 in LBK medium containing 20 to 150 µM CCCP buffered at pH 6.5 or at pH 8.0. After 1,000 generations, the populations tolerated up to 150 µM CCCP. Sequenced isolates had mutations in mprA (emrR), which downregulates the EmrAB-TolC pump that exports CCCP. A mprA::kanR deletion conferred growth at 60 µM CCCP, though not at the higher levels resisted by evolved strains (150 µM). Some mprA mutant strains also had point mutations affecting emrA, but deletion of emrA abolished the CCCP resistance. Thus, CCCP-evolved isolates contained additional adaptations. One isolate lacked emrA or mprA mutations but had mutations in cecR (ybiH), whose product upregulates drug pumps YbhG and YbhFSR, and in gadE, which upregulates the multidrug pump MdtEF. A cecR::kanR deletion conferred partial resistance to CCCP. Other multidrug efflux genes that had mutations included ybhR and acrAB The acrB isolate was sensitive to the AcrAB substrates chloramphenicol and tetracycline. Other mutant genes in CCCP-evolved strains include rng (RNase G) and cyaA (adenylate cyclase). Overall, experimental evolution revealed a CCCP-dependent fitness advantage for mutations increasing CCCP efflux via EmrA and for mutations that may deactivate proton-driven pumps for drugs not present (cecR, gadE, acrAB, and ybhR). These results are consistent with our previous report of drug sensitivity associated with evolved benzoate tolerance.IMPORTANCE The genetic responses of bacteria to depletion of proton motive force (PMF), and their effects on drug resistance, are poorly understood. PMF drives export of many antibiotics, but the energy cost may decrease fitness when antibiotics are absent. Our evolution experiment reveals genetic mechanisms of adaptation to the PMF uncoupler CCCP, including selection for increased CCCP efflux but also against the expression of PMF-driven pumps for drugs not present. The results have implications for our understanding of the gut microbiome, which experiences high levels of organic acids that decrease PMF.
Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Escherichia coli K12/efeitos dos fármacos , Genes Bacterianos/genética , Mutação , Força Próton-Motriz , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Repressoras/genética , Fatores de TranscriçãoRESUMO
Class 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures. Strains from a previously obtained collection of Escherichia coli K12 carrying natural Int1+ conjugative plasmids were employed as Int1 donors in conjugation experiments. Two recipient strains were used: an E. coli K12 and an uropathogenic E. coli isolate. The four antibiotics employed to select transconjugants in LB solid medium were ampicillin, trimethoprim, sulfamethoxazole, and co-trimoxazole. For this purpose, adequate final concentrations of the three last antibiotics had to be determined. Abundant transconjugants resulted from the mating experiments and appeared in most -but not all-selective plates. In those supplemented with sulfamethoxazole or co-trimoxazole, transconjugants grew or not depending on the genetic context of the recipient strain and on the type of gene conferring sulfonamide resistance (sul1 or sul2) carried by the Int1+ plasmid. The horizontal transfer of a recombinant plasmid bearing an Int1 was also assayed by transformation and these experiments provided further information on the viability of the Int1+ clones. Overall, results point to the existence of constraints for the lateral transfer of Int1 among E. coli bacteria, which are particularly evidenced under the antibiotic pressure of sulfamethoxazole or of its combined formula co-trimoxazole.
Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal/genética , Integrons/genética , Sulfonamidas/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Conjugação Genética/efeitos dos fármacos , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Plasmídeos/genética , Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genéticaRESUMO
A method based on nanosecond laser processing was used to design superhydrophilic and superhydrophobic copper substrates. Three different protocols were used to analyze the evolution of the bactericidal activity of the copper substrates with different wettability. Scanning electron microscopy was used to study the variation of cell morphology after the attachment to superhydrophilic and superhydrophobic surfaces. The dispersions of Escherichia coli K12 C600 and Klebsiella pneumoniae 811 in Luria Bertani broth in contact with the superhydrophilic copper surface showed enhanced bacterial inactivation, associated with toxic action of both hierarchically textured copper surface and high content of Cu2+ ions in the dispersion medium. In contrast, the bacterial dispersions in contact with the superhydrophobic copper substrates demonstrated an increase in cell concentration with time until the development of corrosion processes. The resistance of bacterial cells to contact the copper substrates is discussed on the basis of surface forces, determining the primary adhesion and of the protective action of a superhydrophobic state of the surface against electrochemical and biological corrosion.
Assuntos
Ligas/farmacologia , Antibacterianos/farmacologia , Cobre/farmacologia , Corrosão , Condutividade Elétrica , Escherichia coli K12/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Klebsiella pneumoniae/efeitos dos fármacos , Propriedades de Superfície , MolhabilidadeRESUMO
Smart materials with both bactericidal and bacteria-resistant functions are promising for combating the infection concern of medical devices. Current work mostly utilizes hydrolysis to switch materials from antimicrobial to antifouling forms by incubating materials in aqueous solutions for hours to days. In this work, a new photoresponsive poly[2-((4,5-dimethoxy-2-nitrobenzyl)oxy)- N-(2-(methacryloyloxy)ethyl)- N, N-dimethyl-2-oxoethan-1-aminium] (polyCBNA) hydrogel was developed, incorporating the photolabile 4,5-dimethoxy-2-nitrobenzyl and cationic quaternary ammonium groups. The photolabile groups were readily cleaved from the hydrogel shortly upon UV irradiation at 365 nm (a long wavelength widely used for biomedical applications), leading to polymer surface charge switching from cationic to zwitterionic form. Protein adsorbed significantly on polyCBNA but easily desorbed from surfaces after UV irradiation. The cationic hydrogel as a precursor was shown to effectively kill the attached bacteria, and then quickly switched to zwitterionic antifouling form via photolysis, which released the attached bacteria from surfaces and prevented further bacterial attachment. Moreover, the adhered endothelial cells were easily detached from polyCBNA surfaces triggered by light, providing a facile and less destructive nonenzymatic approach to harvest cells. This smart photoresponsive polyCBNA polymer, with integrated antimicrobial and antifouling properties, holds great potential in biomedical applications such as self-sterilizing and self-cleaning coatings for implants, cell harvesting, and cell patterning.
Assuntos
Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Hidrogéis/farmacologia , Ácidos Polimetacrílicos/farmacologia , Adsorção , Animais , Antibacterianos/síntese química , Antibacterianos/efeitos da radiação , Bovinos , Células Endoteliais/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Fibrinogênio/química , Hidrogéis/síntese química , Hidrogéis/efeitos da radiação , Nitrobenzenos/síntese química , Nitrobenzenos/farmacologia , Nitrobenzenos/efeitos da radiação , Fotólise , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/efeitos da radiação , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/efeitos da radiaçãoRESUMO
Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for osteogenic and bactericidal nanopatterns is ongoing but no controlled nanopatterns with dual osteogenic and bactericidal functionalities have been found yet. In this study, electron beam induced deposition (EBID) was used for accurate and reproducible decoration of silicon surfaces with four different types of nanopatterns. The features used in the first two nanopatterns (OST1 and OST2) were derived from osteogenic nanopatterns known to induce osteogenic differentiation of stem cells in the absence of osteogenic supplements. Two modifications of these nanopatterns were also included (OST2-SQ, OST2-H90) to study the effects of controlled disorder and lower nanopillar heights. An E. coli K-12 strain was used for probing the response of bacteria to the nanopatterns. Three nanopatterns (OST2, OST2-SQ, and OST2-H90) exhibited clear bactericidal behavior as evidenced by severely damaged cells and disrupted formation of extracellular polymeric substance. These findings indicate that controlled nanopatterns with features derived from osteogenic ones can have bactericidal activity and that EBID represents an enabling nanotechnology to achieve (multi)functional nanopatterns for bone implants.
Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Osteogênese , Animais , Antibacterianos/química , Biomarcadores/química , Diferenciação Celular/efeitos dos fármacos , Humanos , Nanoestruturas/química , Silício/química , Propriedades de SuperfícieRESUMO
Dimethyl phthalate (DMP), a phthalate ester (PAE), is a ubiquitous and organic pollutant. In this study, the toxicity of DMP to Escherichia coli K12 and its underlying mechanism were investigated. The results showed that DMP inhibited the growth of E. coli K12 and induced cell inactivation and/or death. DMP caused serious damage to the cell membrane of E. coli K12, and the damage increased with higher DMP concentrations. DMP exposure disrupted cell membranes, as evidenced by dose-dependent variations of cell structures, surface properties, and membrane compositions. Increases in the malondialdehyde (MDA) content indicated an increase in oxidative stress induced by DMP in E. coli K12. The activity of succinic dehydrogenase (SDH) was changed by DMP, which could affect energy metabolism in the membrane of E. coli K12. The expression levels of OmpA and OmpX were increased, and the expression levels of OmpF and OmpW were decreased, in E. coli K12 exposed to DMP. The toxicities of DMP to E. coli K12 could be ascribed to membrane disruption and oxidative stress-induced cell inactivation and/or death. The outcomes will shed new light on the assessment of the ecological effects of DMP.