Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.131
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1178-1193, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669355

RESUMO

Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/ß-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.


Assuntos
Esterases , Simulação de Dinâmica Molecular , Esterases/química , Esterases/metabolismo , Esterases/genética , Especificidade por Substrato , Domínio Catalítico , Cristalografia por Raios X , Conformação Proteica , Hidrólise , Cinética , Modelos Moleculares
2.
Mol Microbiol ; 120(2): 122-140, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254295

RESUMO

Overcoming lysogenization defect (OLD) proteins are a conserved family of ATP-powered nucleases that function in anti-phage defense. Recent bioinformatic, genetic, and crystallographic studies have yielded new insights into the structure, function, and evolution of these enzymes. Here we review these developments and propose a new classification scheme to categorize OLD homologs that relies on gene neighborhoods, biochemical properties, domain organization, and catalytic machinery. This taxonomy reveals important similarities and differences between family members and provides a blueprint to contextualize future in vivo and in vitro findings. We also detail how OLD nucleases are related to PARIS and Septu anti-phage defense systems and discuss important mechanistic questions that remain unanswered.


Assuntos
Bactérias , Bacteriófagos , Esterases , Bacteriófagos/fisiologia , Bactérias/enzimologia , Bactérias/virologia , Esterases/química , Exodesoxirribonuclease V , Adenosina Trifosfatases/química
3.
Chemistry ; 30(24): e202304367, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38377169

RESUMO

Carbonic Anhydrases (CAs) have been a target for de novo protein designers due to the simplicity of the active site and rapid rate of the reaction. The first reported mimic contained a Zn(II) bound to three histidine imidazole nitrogens and an exogenous water molecule, hence closely mimicking the native enzymes' first coordination sphere. Co(II) has served as an alternative metal to interrogate CAs due to its d7 electronic configuration for more detailed solution characterization. We present here the Co(II) substituted [Co(II)(H2O/OH-)]N(TRIL2WL23H)3 n+ that behaves similarly to native Co(II) substituted human-CAs. Like the Zn(II) analogue, the cobalt-derivative at slightly basic pH is incapable of hydrolyzing p-nitrophenylacetate (pNPA); however, as the pH is increased a significant activity develops, which at pH values above 10 eventually yields a catalytic efficiency that exceeds that of the [Zn(II)(OH-)]N(TRIL2WL23H)3 + peptide complex. X-ray absorption analysis is consistent with an octahedral species at pH 7.5 that converts to a 5-coordinate species by pH 11. UV-vis spectroscopy can monitor this transition, giving a pKa for the conversion of 10.3. We assign this conversion to the formation of a 5-coordinate Co(II)(Nimid)3(OH)(H2O) species. The pH dependent kinetic analysis indicates the maximal rate (kcat), and thus the catalytic efficiency (kcat/Km), follow the same pH profile as the spectroscopic conversion to the pentacoordinate species. This correlation suggests that the chemically irreversible ester hydrolysis corresponds to the rate determining process.


Assuntos
Anidrases Carbônicas , Cobalto , Esterases , Zinco , Zinco/química , Cobalto/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio , Humanos , Esterases/química , Esterases/metabolismo , Domínio Catalítico , Hidrólise , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cinética , Catálise , Nitrofenóis/química , Nitrofenóis/metabolismo
4.
Anal Biochem ; 685: 115390, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951454

RESUMO

To alleviate environmental problems caused by using conventional plastics, bioplastics have garnered significant interest as alternatives to petroleum-based plastics. Despite possessing better degradability traits compared to traditional plastics, the degradation of bioplastics still demands a longer duration than initially anticipated. This necessitates the utilization of degradation strains or enzymes to enhance degradation efficiency, ensuring timely degradation. In this study, a novel screening method to identify bioplastic degraders faster was suggested to circumvent the time-consuming and laborious characteristics of solid-based plate assays. This liquid-based colorimetric method confirmed the extracellular esterase activity with p-nitrophenyl esters. It eliminated the needs to prepare plastic emulsion plates at the initial screening system, shortening the time for the overall screening process and providing more quantitative data. p-nitrophenyl hexanoate (C6) was considered the best substrate among the various p-nitrophenyl esters as substrates. The screening was performed in liquid-based 96-well plates, resulting in the discovery of a novel strain, Bacillus sp. SH09, with a similarity of 97.4% with Bacillus licheniformis. Furthermore, clear zone assays, degradation investigations, scanning electron microscopy, and gel permeation chromatography were conducted to characterize the biodegradation capabilities of the new strain, the liquid-based approach offered a swift and less labor-intensive option during the initial stages.


Assuntos
Esterases , Plásticos , Plásticos/química , Esterases/química , Ensaios de Triagem em Larga Escala , Colorimetria , Biopolímeros
5.
Biomacromolecules ; 25(6): 3607-3619, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38776179

RESUMO

Studying how synthetic polymer assemblies respond to sequential enzymatic stimuli can uncover intricate interactions in biological systems. Using amidase- and esterase-responsive PEG-based diblock (DBA) and triblock amphiphiles (TBAs), we created two distinct formulations: amidase-responsive DBA with esterase-responsive TBA and vice versa. We studied their cascade responses to the two enzymes and the sequence of their introduction. These formulations underwent cascade mesophase transitions upon the addition of the DBA-degrading enzyme, transitioning from (i) coassembled micelles to (ii) triblock-based hydrogel, and ultimately to (iii) dissolved polymers when exposed to the TBA hydrolyzing enzyme. The specific pathway of the two mesophase transitions depended on the compositions of the formulations and the enzyme introduction sequence. The results highlight the potential for designing polymeric formulations with programmable multistep enzymatic responses, mimicking the complex behavior of biological macromolecules.


Assuntos
Polietilenoglicóis , Polietilenoglicóis/química , Micelas , Esterases/química , Esterases/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Transição de Fase , Polímeros/química , Hidrogéis/química
6.
Biomacromolecules ; 25(5): 2803-2813, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38629692

RESUMO

The ability of bovine serum albumin (BSA) to form condensates in crowded environments has been discovered only recently. Effects of this condensed state on the secondary structure of the protein have already been unraveled as some aging aspects, but the pseudo-enzymatic behavior of condensed BSA has never been reported yet. This article investigates the kinetic profile of para-nitrophenol acetate hydrolysis by BSA in its condensed state with poly(ethylene) glycol (PEG) as the crowding agent. Furthermore, the initial BSA concentration was varied between 0.25 and 1 mM which allowed us to modify the size distribution, the volume fraction, and the partition coefficient (varying from 136 to 180). Hence, the amount of BSA originally added was a simple way to modulate the size and density of the condensates. Compared with dilute BSA, the initial velocity (vi) with condensates was dramatically reduced. From the Michaelis-Menten fits, the extracted Michaelis constant Km and the maximum velocity Vmax decreased in control samples without condensates when the BSA concentration increased, which was attributed to BSA self-oligomerization. In samples containing condensates, the observed vi was interpreted as an effect of diluted BSA remaining in the supernatants and from the condensates. In supernatants, the crowding effect of PEG increased the kcat and catalytic efficiency. Last, Vmax was proportional to the volume fraction of the condensates, which could be controlled by varying its initial concentration. Hence, the major significance of this article is the control of the size and volume fraction of albumin condensates, along with their kinetic profile using liquid-liquid phase separation.


Assuntos
Esterases , Soroalbumina Bovina , Animais , Bovinos , Esterases/metabolismo , Esterases/química , Hidrólise , Cinética , Nitrofenóis/química , Nitrofenóis/metabolismo , Polietilenoglicóis/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
7.
Mol Biol Rep ; 51(1): 767, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878205

RESUMO

BACKGROUND: Esterases (EC 3.1.1.X) are enzymes that catalyze the hydrolysis ester bonds. These enzymes have large potential for diverse applications in fine industries, particularly in pharmaceuticals, cosmetics, and bioethanol production. METHODS AND RESULTS: In this study, a gene encoding an esterase from Thermobifida fusca YX (TfEst) was successfully cloned, and its product was overexpressed in Escherichia coli and purified using affinity chromatography. The TfEst kinetic assay revealed catalytic efficiencies of 0.58 s-1 mM-1, 1.09 s-1 mM-1, and 0.062 s-1 mM-1 against p-Nitrophenyl acetate, p-Nitrophenyl butyrate, and 1-naphthyl acetate substrates, respectively. Furthermore, TfEst also exhibited activity in a pH range from 6.0 to 10.0, with maximum activity at pH 8.0. The enzyme demonstrated a half-life of 20 min at 70 °C. Notably, TfEst displayed acetyl xylan esterase activity as evidenced by the acetylated xylan assay. The structural prediction of TfEst using AlphaFold indicated that has an α/ß-hydrolase fold, which is consistent with other esterases. CONCLUSIONS: The enzyme stability over a broad pH range and its activity at elevated temperatures make it an appealing candidate for industrial processes. Overall, TfEst emerges as a promising enzymatic tool with significant implications for the advancement of biotechnology and biofuels industries.


Assuntos
Acetilesterase , Esterases , Thermobifida , Acetilesterase/metabolismo , Acetilesterase/genética , Acetilesterase/química , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato , Thermobifida/enzimologia , Thermobifida/genética , Esterases/metabolismo , Esterases/genética , Esterases/química , Estabilidade Enzimática , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular/métodos , Hidrólise , Xilanos/metabolismo , Butiratos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Nitrofenóis
8.
Appl Microbiol Biotechnol ; 108(1): 335, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747981

RESUMO

Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.


Assuntos
Zea mays , Especificidade por Substrato , Esterases/genética , Esterases/metabolismo , Esterases/química , Lignina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Filogenia
9.
Eur J Oral Sci ; 132(3): e12987, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616404

RESUMO

Resin-based three-dimensional (3D) printing finds extensive application in the field of dentistry. Although studies of cytotoxicity, mechanical and physical properties have been conducted for newly released 3D printing resins such as Crowntec (Saremco), Temporary Crown Resin (Formlabs) and Crown & Bridge (Nextdent), the resistance of these materials to esterases in saliva has not been demonstrated at the molecular level. Therefore, in this study, the binding affinities and stability of these new 3D printing resins to the catalytic sites of esterases were investigated using molecular docking and molecular mechanics with Poisson-Bolzmann and surface area solvation (MM/PBSA) methods after active pocket screening. Toxicity predictions of the materials were also performed using ProTox-II and Toxtree servers. The materials were analyzed for mutagenicity, cytotoxicity, and carcinogenicity, and LD50 values were predicted from their molecular structures. The results indicated that out of the three novel 3D printing materials, Nexdent exhibited reduced binding affinity to esterases, indicating enhanced resistance to enzymatic degradation and possessing a superior toxicity profile.


Assuntos
Simulação de Acoplamento Molecular , Impressão Tridimensional , Humanos , Esterases/metabolismo , Esterases/química , Animais , Teste de Materiais , Materiais Dentários/química
10.
Biotechnol Lett ; 46(1): 107-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150097

RESUMO

PURPOSE: Glucuronoyl esterases (GE, family CE15) catalyse the cleavage of ester linkages in lignin-carbohydrate complexes (LCCs), and this study demonstrate how transesterification reactions with a fungal GE from Cerrena unicolor (CuGE) can reveal the enzyme's preference for the alcohol-part of the ester-bond. METHODS: This alcohol-preference relates to where the ester-LCCs are located on the lignin molecule, and has consequences for how the enzymes potentially interact with lignin. It is unknown exactly what the enzymes prefer; either the α-benzyl or the γ-benzyl position. By providing the enzyme with a donor substrate (the methyl ester of either glucuronate or 4-O-methyl-glucuronate) and either one of two acceptor molecules (benzyl alcohol or 3-phenyl-1-propanol) we demonstrate that the enzyme can perform transesterification and it serves as a method for assessing the enzyme's alcohol preferences. CONCLUSION: CuGE preferentially forms the γ-ester from the methyl ester of 4-O-methyl-glucuronate and 3-phenyl-1-propanol and the enzyme's substrate preferences are primarily dictated by the presence of the 4-O-methylation on the glucuronoyl donor, and secondly on the type of alcohol.


Assuntos
Esterases , Lignina , Polyporales , Propanóis , Esterases/química , Carboidratos , Ésteres , Glucuronatos , Especificidade por Substrato
11.
Biotechnol Lett ; 46(3): 443-458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523202

RESUMO

OBJECTIVES: Although Geobacillus are significant thermophilic bacteria source, there are no reports of thermostable esterase gene in Geobacillus jurassicus or rational design strategies to increase the thermal stability of esterases. RESULTS: Gene gju768 showed a highest similarity of 15.20% to esterases from Geobacillus sp. with detail enzymatic properties. Using a combination of Gibbs Unfolding Free Energy (∆∆G) calculator and the distance from the mutation site to the catalytic site (DsCα-Cα) to screen suitable mutation sites with elimination of negative surface charge, the mutants (D24N, E221Q, and E253Q) displayed stable mutants with higher thermal stability than the wild-type (WT). Mutant E253Q exhibited the best thermal stability, with a half-life (T1/2) at 65 °C of 32.4 min, which was 1.8-fold of the WT (17.9 min). CONCLUSION: Cloning of gene gju768 and rational design based on surface charge engineering contributed to the identification of thermostable esterase from Geobacillus sp. and the exploration of evolutionary strategies for thermal stability.


Assuntos
Estabilidade Enzimática , Esterases , Geobacillus , Geobacillus/enzimologia , Geobacillus/genética , Esterases/genética , Esterases/química , Esterases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desenho Assistido por Computador , Clonagem Molecular
12.
Angew Chem Int Ed Engl ; 63(30): e202405152, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739413

RESUMO

Biocatalysis provides an attractive approach to facilitate synthetic reactions in aqueous media. Motivated by the discovery of promiscuous aminolysis activity of esterases, we exploited the esterase from Pyrobaculum calidifontis VA1 (PestE) for the synthesis of carbamates from different aliphatic, aromatic, and arylaliphatic amines and a set of carbonates such as dimethyl-, dibenzyl-, or diallyl carbonate. Thus, aniline and benzylamine derivatives, aliphatic and even secondary amines could be efficiently converted into the corresponding benzyloxycarbonyl (Cbz)- or allyloxycarbonyl (Alloc)-protected products in bulk water, with (isolated) yields of up to 99 %.


Assuntos
Aciltransferases , Carbamatos , Esterases , Água , Esterases/metabolismo , Esterases/química , Carbamatos/química , Carbamatos/metabolismo , Carbamatos/síntese química , Água/química , Aciltransferases/metabolismo , Aciltransferases/química , Biocatálise , Estrutura Molecular , Aminas/química , Aminas/metabolismo
13.
Chembiochem ; 24(5): e202200642, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36545817

RESUMO

Esterases are among the most studied enzymes, and their applications expand into several branches of industrial biotechnology. Yet, despite the fact that information on their substrate specificity is crucial for selecting or designing the best fitted biocatalyst for the desired application, it cannot be predicted from their amino acid sequence. In this work, we studied the substrate scope of the newly discovered hydrolytic extremozyme, EstDZ3, against a library of esters with variable carbon chain lengths in an effort to understand the crucial amino acids for the substrate selectivity of this enzyme. EstDZ3 appears to be active against a wide range of esters with high selectivity towards medium- to long-carbon chain vinyl esters. In-silico studies of its 3D structure revealed that the selectivity might arise from the mainly hydrophobic nature of the active site's environment.


Assuntos
Esterases , Ésteres , Esterases/química , Especificidade por Substrato , Hidrólise , Biblioteca Gênica , Sequência de Aminoácidos
14.
Chembiochem ; 24(11): e202300205, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069132

RESUMO

The O-acetylation of the muramic acid residues in peptidoglycan (PG) is a modification that protects the bacteria from lysis due to the action of lysozyme. In Gram-negative bacteria, deacetylation is required to allow lytic transglycosylases to promote PG cleavage during cell growth and division. This deacetylation is catalyzed by O-acetylpeptidoglycan esterase (Ape) which is a serine esterase and employs covalent catalysis via a serine-linked acyl enzyme intermediate. Loss of Ape activity affects the size and shape of bacteria and dramatically reduces virulence. In this work, we report the first rationally designed aldehyde-based inhibitors of Ape from Campylobacter jejuni. The most potent of these acts as a competitive inhibitor with a Ki value of 13 µM. We suspect that the inhibitors are forming adducts with the active site serine that closely mimic the tetrahedral intermediate of the normal catalytic cycle. Support for this notion is found in the observation that reduction of the aldehyde to an alcohol effectively abolishes the inhibition.


Assuntos
Acetilesterase , Hominidae , Animais , Peptidoglicano/química , Aldeídos/farmacologia , Esterases/química , Bactérias/metabolismo , Serina , Hominidae/metabolismo
15.
Chemistry ; 29(32): e202300244, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014630

RESUMO

Esterases enzymes regulate the body's homeostasis by catalyzing the hydrolysis of various esters. These are also involved in protein metabolism, detoxification, and signal transmission. Most importantly, esterase plays a significant role in cell viability and cytotoxicity assays. Hence, developing an efficient chemical probe is essential for monitoring the esterase activity. Several fluorescent probes for esterase have also been reported targeting cytosol and lysosomes. However, the ability to create efficient probes is constrained due to a lack of understanding of the esterase's active site for hydrolyzing the substrate. In addition, the fluorescent turn-on may limit efficient monitoring. Herein, we have developed a unique fluorescent probe, PM-OAc, to monitor mitochondrial esterase enzyme activity ratiometrically. This probe exhibited a bathochromic wavelength shift with esterase enzyme in alkaline pH (pH∼8.0) due to an intramolecular charge transfer (ICT) process. The phenomenon is well supported by TD-DFT calculation. Moreover, the substrate (PM-OAc) binding at the active site of esterase and its catalytic mechanism to hydrolyze the ester bond are elucidated by molecular dynamics (MD) simulation and QM/MM (Quantum mechanics/molecular mechanics) calculations, respectively. Fluorescent image-based analysis of the cellular environment reveals that our probe can distinguish between live and dead cells based on esterase enzyme activity.


Assuntos
Esterases , Corantes Fluorescentes , Esterases/química , Corantes Fluorescentes/química , Hidrólise , Mitocôndrias/metabolismo , Ésteres
16.
Soft Matter ; 19(19): 3458-3463, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129250

RESUMO

Peptide-based artificial enzymes derived from the supramolecular assembly of short peptides have attracted growing attention in recent years. However, the stability of these artificial enzymes is still a problem since their noncovalent supramolecular structure is quite sensitive and frail under environmental conditions. In this study, we reported a covalent crosslinking strategy for the fabrication of a robust peptide-based artificial esterase. Inspired by the di-tyrosine bonds in many natural structural proteins, multi-tyrosines were designed into a peptide sequence with histidine as the catalytic residue for the ester hydrolysis reaction. Upon the photo-induced oxidation reaction, the short peptide YYHYY rapidly transferred into nanoparticle-shaped aggregates (CL-YYHYY) and displayed improved esterase-like catalytic activity than some previously reported noncovalent-based artificial esterases. Impressively, CL-YYHYY showed outstanding reusability and superior stability under high temperature, strong acid and alkaline and organic solvent conditions. This study provides a promising approach to improving the catalytic activity and stability of peptide-based artificial enzymes.


Assuntos
Esterases , Peptídeos , Esterases/química , Esterases/metabolismo , Peptídeos/química , Hidrólise , Sequência de Aminoácidos , Catálise
17.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1833-1839, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37705347

RESUMO

Esterases/lipases from the GDSL family have potential applications in the hydrolysis and synthesis of important esters of pharmaceutical, food, and biotechnical interests. However, the structural and functional understanding of GDSL enzymes is still limited. Here, we report the crystal structure of the GDSL family esterase EstL5 complexed with PMSF at 2.34 Šresolution. Intriguingly, the PMSF binding site is not located at the active site pocket but is situated in a surface cavity. At the active site, we note that there is a trapped crystallization solvent 1,6-hexanediol, which mimics the bound ester chain, allowing for further definition of the active site pocket of EstL5. The most striking structural feature of EstL5 is the presence of a unique channel, which extends approximately 18.9 Å, with a bottleneck radius of 6.8 Å, connecting the active-site pocket and the surface cavity. Replacement of Ser205 with the bulk aromatic residue Trp or Phe could partially block the channel at one end and perturb its access. Reduced enzymatic activity is found in the EstL5 S205W and EstL5 S205F mutants, suggesting the functional relevance of the channel to enzyme catalysis. Our study provides valuable information regarding the properties of the GDSL-family enzymes for designing more efficient and robust biocatalysts.


Assuntos
Esterases , Lipase , Esterases/genética , Esterases/química , Esterases/metabolismo , Domínio Catalítico , Lipase/metabolismo , Sítios de Ligação
18.
Proc Natl Acad Sci U S A ; 117(13): 7122-7130, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170022

RESUMO

ß-mannans and xylans are important components of the plant cell wall and they are acetylated to be protected from degradation by glycoside hydrolases. ß-mannans are widely present in human and animal diets as fiber from leguminous plants and as thickeners and stabilizers in processed foods. There are many fully characterized acetylxylan esterases (AcXEs); however, the enzymes deacetylating mannans are less understood. Here we present two carbohydrate esterases, RiCE2 and RiCE17, from the Firmicute Roseburia intestinalis, which together deacetylate complex galactoglucomannan (GGM). The three-dimensional (3D) structure of RiCE17 with a mannopentaose in the active site shows that the CBM35 domain of RiCE17 forms a confined complex, where the axially oriented C2-hydroxyl of a mannose residue points toward the Ser41 of the catalytic triad. Cavities on the RiCE17 surface may accept galactosylations at the C6 positions of mannose adjacent to the mannose residue being deacetylated (subsite -1 and +1). In-depth characterization of the two enzymes using time-resolved NMR, high-performance liquid chromatography (HPLC), and mass spectrometry demonstrates that they work in a complementary manner. RiCE17 exclusively removes the axially oriented 2-O-acetylations on any mannose residue in an oligosaccharide, including double acetylated mannoses, while the RiCE2 is active on 3-O-, 4-O-, and 6-O-acetylations. Activity of RiCE2 is dependent on RiCE17 removing 2-O-acetylations from double acetylated mannose. Furthermore, transacetylation of oligosaccharides with the 2-O-specific RiCE17 provided insight into how temperature and pH affects acetyl migration on manno-oligosaccharides.


Assuntos
Clostridiales/enzimologia , Esterases/metabolismo , Mananas/metabolismo , Esterases/química , Picea , Conformação Proteica , Especificidade por Substrato
19.
Biodegradation ; 34(6): 489-518, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37354274

RESUMO

Biodegradability standards measure ultimate biodegradation of polymers by exposing the material under test to a natural microbial inoculum. Available tests developed by the International Organization for Standardization (ISO) use inoculums sampled from different environments e.g. soil, marine sediments, seawater. Understanding whether each inoculum is to be considered as microbially unique or not can be relevant for the interpretation of tests results. In this review, we address this question by consideration of the following: (i) the chemical nature of biodegradable plastics (virtually all biodegradable plastics are polyesters) (ii) the diffusion of ester bonds in nature both in simple molecules and in polymers (ubiquitous); (iii) the diffusion of decomposers capable of producing enzymes, called esterases, which accelerate the hydrolysis of esters, including polyesters (ubiquitous); (iv) the evidence showing that synthetic polyesters can be depolymerized by esterases (large and growing); (v) the evidence showing that these esterases are ubiquitous (growing and confirmed by bioinformatics studies). By combining the relevant available facts it can be concluded that if a certain polyester shows ultimate biodegradation when exposed to a natural inoculum, it can be considered biodegradable and need not be retested using other inoculums. Obviously, if the polymer does not show ultimate biodegradation it must be considered recalcitrant, until proven otherwise.


Assuntos
Plásticos Biodegradáveis , Poliésteres , Poliésteres/metabolismo , Plásticos Biodegradáveis/química , Polímeros/química , Esterases/química , Esterases/metabolismo , Hidrólise , Biodegradação Ambiental
20.
Glycobiology ; 32(10): 826-848, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35871440

RESUMO

The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.


Assuntos
Carboidratos , Hidrolases , Biopolímeros/biossíntese , Biopolímeros/química , Carboidratos/biossíntese , Carboidratos/química , Esterases/química , Esterases/classificação , Esterases/metabolismo , Hidrolases/química , Hidrolases/classificação , Hidrolases/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA