Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.389
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Strahlenther Onkol ; 200(10): 853-856, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38935091

RESUMO

Today, the name Friedrich Dessauer is almost forgotten; however, his scientific, social, and political works should not be. Dessauer's professional career began at a young age as a professor of physics in Frankfurt am Main. It is said that he published 400 papers and 65 book chapters and pamphlets. He was a technical inventor who established laws that dealt with theories to explain the limited understanding of the effects of radiation on cells. He advocated for methods to improve the therapeutic ratio. As a devout Catholic politician, Dessauer was an early opponent of National Socialism. This led to him being thrown into prison for political reasons in 1933. He did not leave until 1934, and then for Istanbul, largely thanks to Turkish efforts and his appointment as director of a large new institution. While he was already a well-known physicist in Germany, he had to start from scratch in order to build a modern institute. A recent article in the journal Radiotherapy and Oncology celebrated his important contributions to radiology from Turkey. After his contract in Istanbul expired in 1937, he left for the small University of Fribourg in Switzerland, where he was unfortunately unable to continue his scientific productivity. Dessauer wrote textbooks as well as political and philosophical books, and attempted to bridge the gap between Catholicism and science. Additionally, after the war, he began to teach again in Frankfurt. In photos of Dessauer, radiation-induced skin changes on his face and hands were clearly visible. Towards the end of his life, he received many medals and honors for his achievements in Germany, some of them posthumously.


Assuntos
Física Médica , Política , Alemanha , Física Médica/história , História do Século XIX , História do Século XX , Socialismo Nacional/história , Turquia , Humanos , Masculino
2.
J Appl Clin Med Phys ; 25(10): e14518, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39284579

RESUMO

Within the landscape of medical physics education, residency programs are instrumental in imparting hands-on training and experiential knowledge to early-career physicists. Ensuring access to educational opportunities for physicists with disabilities is a legal, ethical, and pragmatic requirement for programs, considering that a significant proportion of the United States population has a disability. Grounded in conceptual frameworks of competency-based medical education and the social model of disability, this work provides an introduction to some practical recommendations for medical physics residency programs. Strategies include embracing universal design principles, fostering partnerships with disability service offices, using inclusive language, developing and publicizing clear procedures for disclosing disabilities and requesting accommodations, and maintaining an overall commitment to equitable access to education. This work urges medical physics residency leadership to proactively move towards training environments that support the needs of residents across the spectrum of disability, highlighting why disability inclusion fundamentally enriches diversity.


Assuntos
Pessoas com Deficiência , Física Médica , Internato e Residência , Humanos , Física Médica/educação , Estados Unidos
3.
J Appl Clin Med Phys ; 25(5): e14354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38620004

RESUMO

PURPOSE: In 2019, a formal review and update of the current training program for medical physics residents/registrars in Australasia was conducted. The purpose of this was to ensure the program met current local clinical and technological requirements, to improve standardization of training across Australia and New Zealand and generate a dynamic curriculum and programmatic assessment model. METHODS: A four-phase project was initiated, including a consultant desktop review of the current program and stakeholder consultation. Overarching program outcomes on which to base the training model were developed, with content experts used to update the scientific content. Finally, assessment specialists reviewed a range of assessment models to determine appropriate assessment methods for each learning outcome, creating a model of programmatic assessment. RESULTS: The first phase identified a need for increased standardized assessment incorporating programmatic assessment. Seven clear program outcome statements were generated and used to guide and underpin the new curriculum framework. The curriculum was expanded from the previous version to include emerging technologies, while removing previous duplication. Finally, a range of proposed assessments for learning outcomes in the curriculum were generated into the programmatic assessment model. These new assessment methods were structured to incorporate rubric scoring to provide meaningful feedback. CONCLUSIONS: An updated training program for Radiation Oncology Medial Physics registrars/residents was released in Australasia. Scientific content from a previous program was used as a foundation and revised for currency with the ability to accommodate a dynamic curriculum model. A programmatic model of assessment was created after comprehensive review and consultation. This new model of assessment provides more structured, ongoing assessment throughout the training period. It contains allowances for local bespoke assessment, and guidance for supervisors by the provision of marking templates and rubrics.


Assuntos
Currículo , Física Médica , Radioterapia (Especialidade) , Radioterapia (Especialidade)/educação , Humanos , Física Médica/educação , Internato e Residência , Competência Clínica/normas , Austrália , Educação de Pós-Graduação em Medicina/métodos , Avaliação Educacional/métodos , Nova Zelândia
4.
J Appl Clin Med Phys ; 25(5): e14313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650177

RESUMO

BACKGROUND: This study utilizes interviews of clinical medical physicists to investigate self-reported shortcomings of the current weekly chart check workflow and opportunities for improvement. METHODS: Nineteen medical physicists were recruited for a 30-minute semi-structured interview, with a particular focus placed on image review and the use of automated tools for image review in weekly checks. Survey-type questions were used to gather quantitative information about chart check practices and importance placed on reducing chart check workloads versus increasing chart check effectiveness. Open-ended questions were used to probe respondents about their current weekly chart check workflow, opinions of the value of weekly chart checks and perceived shortcomings, and barriers and facilitators to the implementation of automated chart check tools. Thematic analysis was used to develop common themes across the interviews. RESULTS: Physicists ranked highly the value of reducing the time spent on weekly chart checks (average 6.3 on a scale from 1 to 10), but placed more value on increasing the effectiveness of checks with an average of 9.2 on a 1-10 scale. Four major themes were identified: (1) weekly chart checks need to adapt to an electronic record-and-verify chart environment, (2) physicists could add value to patient care by analyzing images without duplicating the work done by physicians, (3) greater support for trending analysis is needed in weekly checks, and (4) automation has the potential to increase the value of physics checks. CONCLUSION: This study identified several key shortcomings of the current weekly chart check process from the perspective of the clinical medical physicist. Our results show strong support for automating components of the weekly check workflow in order to allow for more effective checks that emphasize follow-up, trending, failure modes and effects analysis, and allow time to be spent on other higher value tasks that improve patient safety.


Assuntos
Fluxo de Trabalho , Humanos , Física Médica , Inquéritos e Questionários , Processamento de Imagem Assistida por Computador/métodos , Automação , Garantia da Qualidade dos Cuidados de Saúde/normas , Entrevistas como Assunto/métodos
5.
J Radiol Prot ; 44(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232401

RESUMO

This study assesses the efficacy of Generative Pre-Trained Transformers (GPT) published by OpenAI in the specialised domains of radiological protection and health physics. Utilising a set of 1064 surrogate questions designed to mimic a health physics certification exam, we evaluated the models' ability to accurately respond to questions across five knowledge domains. Our results indicated that neither model met the 67% passing threshold, with GPT-3.5 achieving a 45.3% weighted average and GPT-4 attaining 61.7%. Despite GPT-4's significant parameter increase and multimodal capabilities, it demonstrated superior performance in all categories yet still fell short of a passing score. The study's methodology involved a simple, standardised prompting strategy without employing prompt engineering or in-context learning, which are known to potentially enhance performance. The analysis revealed that GPT-3.5 formatted answers more correctly, despite GPT-4's higher overall accuracy. The findings suggest that while GPT-3.5 and GPT-4 show promise in handling domain-specific content, their application in the field of radiological protection should be approached with caution, emphasising the need for human oversight and verification.


Assuntos
Inteligência Artificial , Proteção Radiológica , Humanos , Física Médica , Fontes de Energia Elétrica
6.
J Appl Clin Med Phys ; 24(10): e14151, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708093

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Sociedades , Revisão por Pares
7.
J Appl Clin Med Phys ; 24(3): e13895, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739483

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the US. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the US. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Lista de Checagem , Sociedades
8.
J Appl Clin Med Phys ; 24(10): e14124, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37602785

RESUMO

Northwest Medical Physics Center (NMPC) is a nonprofit organization that provides clinical physics support to over 35 radiation therapy facilities concentrated in the Pacific Northwest. Although clinical service is the primary function of NMPC, the diverse array of clinical sites and physics expertise has allowed for the establishment of structured education and research programs, which are complementary to the organization's clinical mission. Three clinical training programs have been developed at NMPC: a therapy medical physics residency program accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), an Applied Physics Technologist (APT) program, and a summer undergraduate internship program. A partnership has also been established with a major radiation oncology clinical vendor for the purposes of validating and testing new clinical devices across multiple facilities. These programs are managed by a dedicated education and research team at NMPC, made up of four qualified medical physicists (QMPs). The education and research work has made a significant contribution to the organization's clinical mission, and it has provided new training opportunities for early-career physicists across many different clinical environments. Education and research can be incorporated into nonacademic clinical environments, improving the quality of patient care, and increasing the number and type of training opportunities available for medical physicists.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Competência Clínica , Currículo , Física Médica/educação
9.
J Appl Clin Med Phys ; 24(3): e13829, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808798

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines (MPPGs) will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (1) Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (2) Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee April 28, 2022.


Assuntos
Braquiterapia , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Sociedades
10.
J Appl Clin Med Phys ; 24(1): e13806, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36347055

RESUMO

PURPOSE: This manuscript describes the structure, management and outcomes of a multi-institutional clinical and research medical physics residency program (Harvard Medical Physics Residency Program, or HMPRP) to provide potentially useful information to the centers considering a multi-institutional approach for their training programs. METHODS: Data from the program documents and public records was used to describe HMPRP and obtain statistics about participating faculty, enrolled residents, and graduates. Challenges associated with forming and managing a multi-institutional program and developed solutions for effective coordination between several clinical centers are described. RESULTS: HMPRP was formed in 2009 and was accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) in 2011. It is a 3-year therapy program, with a dedicated year of research and the 2 years of clinical training at three academic hospitals. A CAMPEP-accredited Certificate Program is embedded in HMPRP to allow enrolled residents to complete a formal didactic training in medical physics if necessary. The clinical training covers the material required by CAMPEP. In addition, training in protons, CyberKnife, MR-linac, and at network locations is included. The clinical training and academic record of the residents is outstanding. All graduates have found employment within clinical medical physics, mostly at large academic centers and graduates had a 100% pass rate at the oral American Board of Radiology exams. On average, three manuscripts per resident are published during residency, and multiple abstracts are presented at conferences. CONCLUSIONS: A multi-institutional medical physics residency program can be successfully formed and managed. With a collaborative administrative structure, the program creates an environment for high-quality clinical training of the residents and high productivity in research. The main advantage of such program is access to a wide variety of resources. The main challenge is creating a structure for efficient management of multiple resources at different locations. This report may provide valuable information to centers considering starting a multi-institutional residency program.


Assuntos
Internato e Residência , Humanos , Estados Unidos , Educação de Pós-Graduação em Medicina , Acreditação , Física Médica/educação , Instalações de Saúde
11.
J Cancer Educ ; 38(3): 813-820, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35761143

RESUMO

We sought to supplement medical physics textbook knowledge and clinical learning with case-based discussions. To our knowledge, this is the first report on a structured combined applied physics curriculum for radiation oncology (RO) and medical physics (MP) trainees. We reviewed our yearly applied physics course given from the years 2016-2021 inclusive. The number of applied physics trainees ranged from 7 to 14 per year (2-9 RO and 3-6 MP residents per year). Each session was taught by a pair of (RO and MP) faculty members. Twenty-nine case-based sessions were given yearly (2016 to 2019). Because of the COVID-19 pandemic restrictions, the course was shortened to 8 case-based sessions in 2020 and 2021. For the years 2016-2021, the mean and median teaching evaluation scores were 4.65 and 5, respectively (range 2-5), where 1 represents worse teaching quality and 5, the best teaching quality. For the year 2021, 2 questions relating to the video virtual format (implemented due to the covid-19 pandemic), revealed consistent high scores with the mean and median responses of 4.14 and 5, respectively (range 1-5). The results from the teaching evaluation scores indicate that the trainees highly valued the teaching sessions and teachers. Our experience indicates that a case-based applied physics course was delivered successfully with continued high teaching evaluation scores. A video virtual platform for an applied physics course could be useful, especially for small programs without a structured applied physics curriculum.


Assuntos
COVID-19 , Internato e Residência , Radioterapia (Especialidade) , Humanos , Radioterapia (Especialidade)/educação , Pandemias , Física Médica/educação , Currículo
12.
J Appl Clin Med Phys ; 23(10): e13771, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36107002

RESUMO

The Professional Doctorate in Medical Physics (DMP) was originally conceived as a solution to the shortage of medical physics residency training positions. While this shortage has now been largely satisfied through conventional residency training positions, the DMP has expanded to multiple institutions and grown into an educational pathway that provides specialized clinical training and extends well beyond the creation of additional training spots. As such, it is important to reevaluate the purpose and the value of the DMP. Additionally, it is important to outline the defining characteristics of the DMP to assure that all existing and future programs provide this anticipated value. Since the formation and subsequent accreditation of the first DMP program in 2009-2010, four additional programs have been created and accredited. However, no guidelines have yet been recommended by the American Association of Physicists in Medicine. CAMPEP accreditation of these programs has thus far been based only on the respective graduate and residency program standards. This allows the development and operation of DMP programs which contain only the requisite Master of Science (MS) coursework and a 2-year clinical training program. Since the MS plus 2-year residency pathway already exists, this form of DMP does not provide added value, and one may question why this existing pathway should be considered a doctorate. Not only do we, as a profession, need to outline the defining characteristics of the DMP, we need to carefully evaluate the potential advantages and disadvantages of this pathway within our education and training infrastructure. The aims of this report from the Working Group on the Professional Doctorate Degree for Medical Physicists (WGPDMP) are to (1) describe the current state of the DMP within the profession, (2) make recommendations on the structure and content of the DMP for existing and new DMP programs, and (3) evaluate the value of the DMP to the profession of medical physics.


Assuntos
Física Médica , Internato e Residência , Humanos , Estados Unidos , Física Médica/educação , Acreditação , Relatório de Pesquisa , Educação de Pós-Graduação em Medicina
13.
J Appl Clin Med Phys ; 23(12): e13777, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125203

RESUMO

Entry into the field of clinical medical physics is most commonly accomplished through the completion of a Commission on Accreditation of Medical Physics Educational Programs (CAMPEP)-accredited graduate and residency program. To allow a mechanism to bring valuable expertise from other disciplines into clinical practice in medical physics, an "alternative pathway" approach was also established. To ensure those trainees who have completed a doctoral degree in physics or a related discipline have the appropriate background and didactic training in medical physics, certificate programs and a CAMPEP-accreditation process for these programs were initiated. However, medical physics-specific didactic, research, and clinical exposure of those entering medical physics residencies from these certificate programs is often comparatively modest when evaluated against individuals holding Master's and/or Doctoral degrees in CAMPEP-accredited graduate programs. In 2016, the AAPM approved the formation of Task Group (TG) 298, "Alternative Pathway Candidate Education and Training." The TG was charged with reviewing previous published recommendations for alternative pathway candidates and developing recommendations on the appropriate education and training of these candidates. This manuscript is a summary of the AAPM TG 298 report.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Física Médica/educação , Competência Clínica , Educação de Pós-Graduação em Medicina
14.
J Appl Clin Med Phys ; 23(12): e13785, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208131

RESUMO

Positron emission tomography with x-ray computed tomography (PET/CT) is increasingly being utilized for radiation treatment planning (RTP). Accurate delivery of RT therefore depends on quality PET/CT data. This study covers quality control (QC) procedures required for PET/CT for diagnostic imaging and incremental QC required for RTP. Based on a review of the literature, it compiles a list of recommended tests, performance frequencies, and tolerances, as well as references to documents detailing how to perform each test. The report was commissioned by the Canadian Organization of Medical Physicists as part of the Canadian Partnership for Quality Radiotherapy initiative.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Física Médica , Canadá , Controle de Qualidade , Tomografia por Emissão de Pósitrons
15.
J Appl Clin Med Phys ; 23(7): e13664, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699199

RESUMO

There is no current authoritative accounting of the number of clinical imaging physicists practicing in the United States. Information about the workforce is needed to inform future efforts to secure training pathways and opportunities. In this study, the AAPM Diagnostic Demand and Supply Projection Working Group collected lists of medical physicists from several state registration and licensure programs and the Conference of Radiation Control Program Directors (CRCPD) registry. By cross-referencing individuals among these lists, we were able to estimate the current imaging physics workforce in the United States by extrapolating based on population. The imaging physics workforce in the United States in 2019 consisted of approximately 1794 physicists supporting diagnostic X-ray (1073 board-certified) and 934 physicists supporting nuclear medicine (460 board-certified), with a number of individuals practicing in both subfields. There were an estimated 235 physicists supporting nuclear medicine exclusively (150 board-certified). The estimated total workforce, accounting for overlap, was 2029 medical physicists. These estimates are in approximate agreement with other published studies of segments of the workforce.


Assuntos
Radioterapia (Especialidade) , Diagnóstico por Imagem , Física Médica/educação , Humanos , Física , Radioterapia (Especialidade)/educação , Radiografia , Estados Unidos , Recursos Humanos
16.
J Appl Clin Med Phys ; 22(8): 6-15, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34318570

RESUMO

PURPOSE: Medical physics staffing models require periodic review due to the rapid evolution of technology and clinical techniques in radiation oncology. We present an update to a grid-based physics staffing algorithm for radiation oncology (originally published in 2012) that has been widely used in Canada over the last decade. MATERIALS AND METHODS: The physics staffing algorithm structure was modified to improve the clarity and consistency of input data. We collected information on clinical procedures, equipment inventory, and teaching activities from 15 radiation treatment centers in the province of Ontario from April 1, 2018, to March 31, 2019. Using these data sets, the algorithm's weighting parameters were adjusted to align the prediction of full-time equivalent (FTE) personnel with actual staffing levels in Ontario. The algorithm computes FTE estimates for medical physicists, physics assistants, engineering (electrical and mechanical), and information technology (IT) support. The performance of the algorithm was also tested in eight Canadian cancer centers outside of Ontario. RESULTS: The mean difference between the algorithm and actual staffing for the 23 Canadian cancer centers did not exceed 0.5 FTE for any staffing group. The results were slightly better in Ontario than in other provinces, as expected since the algorithm was optimized using Ontario data. There was a linear correlation between the algorithm predictions and the number of annual-treated cases for physicists, and physicists plus physics assistants. For other staff categories, the algorithm weighting parameters were not significantly altered, except for a reduction in mechanical engineering staff. Comparison with other published models suggests that the updated algorithm should be considered as a minimum recommended staffing level for the clinical support of radiation oncology programs. CONCLUSIONS: We support the use of grid-based physics staffing algorithms that account for clinical workload with flexibility to adapt to local conditions with variable academic and research demands.


Assuntos
Radioterapia (Especialidade) , Algoritmos , Canadá , Física Médica , Humanos , Física , Recursos Humanos
17.
J Appl Clin Med Phys ; 22(6): 11-15, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34018313

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8,000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (1) Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (2) Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Humanos , Sociedades , Estados Unidos
18.
J Appl Clin Med Phys ; 22(9): 73-81, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34272810

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.


Assuntos
Radioterapia (Especialidade) , Radioterapia Guiada por Imagem , Física Médica , Humanos , Sociedades , Estados Unidos , Raios X
19.
J Appl Clin Med Phys ; 22(12): 186-193, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34697863

RESUMO

BACKGROUND: Clinical medical physics duties include routine tasks, special procedures, and development projects. It can be challenging to distribute the effort equitably across all team members, especially in large clinics or systems where physicists cover multiple sites. The purpose of this work is to study an equitable workload distribution system in radiotherapy physics that addresses the complex and dynamic nature of effort assignment. METHODS: We formed a working group that defined all relevant clinical tasks and estimated the total time spent per task. Estimates used data from the oncology information system, a survey of physicists, and group consensus. We introduced a quantitative workload unit, "equivalent workday" (eWD), as a common unit for effort. The sum of all eWD values adjusted for each physicist's clinical full-time equivalent yields a "normalized total effort" (nTE) metric for each physicist, that is, the fraction of the total effort assigned to that physicist. We implemented this system in clinical operation. During a trial period of 9 months, we made adjustments to include tasks previously unaccounted for and refined the system. The workload distribution of eight physicists over 12 months was compared before and after implementation of the nTE system. RESULTS: Prior to implementation, differences in workload of up to 50% existed between individual physicists (nTE range of 10.0%-15.0%). During the trial period, additional categories were added to account for leave and clinical projects that had previously been assigned informally. In the 1-year period after implementation, the individual workload differences were within 5% (nTE range of 12.3%-12.8%). CONCLUSION: We developed a system to equitably distribute workload and demonstrated improvements in the equity of workload. A quantitative approach to workload distribution improves both transparency and accountability. While the system was motivated by the complexities within an academic medical center, it may be generally applicable for other clinics.


Assuntos
Radioterapia (Especialidade) , Carga de Trabalho , Física Médica , Humanos , Inquéritos e Questionários
20.
J Appl Clin Med Phys ; 22(6): 4-10, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938120

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (a) Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (b) Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Física Médica , Radioterapia (Especialidade) , Citarabina , Humanos , Sociedades , Tomografia Computadorizada por Raios X , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA