Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8028): 189-197, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143206

RESUMO

Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.


Assuntos
Carcinogênese , Ácidos Graxos , Corpos Cetônicos , Biossíntese de Proteínas , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Dieta Cetogênica , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Jejum/fisiologia , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Corpos Cetônicos/biossíntese , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos/genética , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo
2.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852892

RESUMO

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Iniciação 4E em Eucariotos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por Substrato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
5.
Nat Chem Biol ; 18(9): 942-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697798

RESUMO

Regenerating pancreatic ß-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of ß-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased ß-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and ß-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in ß-cell regeneration, a role that warrants further investigation in diabetes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Animais , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo
6.
Phys Chem Chem Phys ; 26(3): 2073-2081, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131207

RESUMO

Interaction between the cap-binding protein eIF4E and the scaffolding protein eIF4G is essential for the cap-dependent translation initiation in eukaryotes. In the Saccharomyces cerevisiae eIF4G/eIF4E complex, the intrinsically disordered eIF4E-binding domain of eIF4G folds into a bracelet-like structure upon binding to eIF4E. Aiming to unveil the molecular mechanism underlying the binding-wrapping process of eIF4G with eIF4E, we performed extensive coarse-grained molecular dynamics simulations and transition path analysis in this work. The major transition pathway revealed from our simulations showed that docking of the eIF4E-binding motif of eIF4G to the folded core of eIF4E initiates the binding process and then the disordered eIF4G wraps around the N-terminal tail of eIF4E. Additionally, we identified a minor transition pathway which indicates the involvement of topological frustration in the binding process. By manipulating the interaction strength of the wrapping contacts and the latching contacts, we further dissected factors affecting the formation of topological frustration and the binding transition kinetics. Our findings provide new clues for experimental studies on the binding mechanism of eIF4G to eIF4E in the future and exemplify the involvement of topological frustration in the binding process of intrinsically disordered proteins.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , Saccharomyces cerevisiae , Ligação Proteica
7.
Phys Chem Chem Phys ; 26(14): 10660-10672, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511550

RESUMO

The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a ß-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Humanos , Proteínas de Transporte/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Biossíntese de Proteínas
8.
Mol Cell ; 64(3): 467-479, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773676

RESUMO

Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.


Assuntos
Drosophila melanogaster/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação Eucariótico 4G/química , Iniciação Traducional da Cadeia Peptídica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Drosophila melanogaster/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
9.
Biochemistry ; 62(11): 1767-1775, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132650

RESUMO

During cellular stress conditions, particularly those seen in multiple cancers, canonical cap-dependent translation is suppressed and a subset of cellular mRNAs (e.g., those encoding FGF-9, HIF-1α, and p53, among others) is known to translate in a cap-independent manner. Human eIF4GI specifically binds to the highly structured 5'-untranslated regions (5'UTRs) of these mRNAs to promote cap-independent translation. The thermodynamics of these protein-RNA interactions have not been explored, and such information will aid in understanding the basic interactions and in potential design of therapeutic drugs. Using fluorescence quenching-based assays and site-directed mutagenesis, we determined the thermodynamic properties of three eIF4GI constructs binding to the 5'UTRs of FGF-9, HIF-1α, and p53 mRNA. These three constructs were designed to explore the importance of the eIF4E binding domain of eIF4GI, which has been shown to be important in binding and selectivity. eIF4GI557-1599, containing the eIF4E binding domain, had higher binding enthalpy (-21 to -14 kJ mol-1 higher), suggesting increased hydrogen bonding, whereas for eIF4GI682-1599 lacking the eIF4E binding domain, binding was entropically favored (TΔS/ΔG of 46-85%), suggesting hydrophobic forces and/or less specific binding. A third construct where a cluster of positively charged amino acids was changed to neutral amino acids showed intermediate properties. Circular dichroism spectra confirmed the significant role of eIF4E binding domain in stable bond formation between eIF4GI and mRNAs via conformational changes. Together, these data contribute to a better understanding of the molecular forces involved in eIF4GI-mRNA recognition and elucidate properties important for the design of small molecules to mediate these interactions.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteína Supressora de Tumor p53 , Humanos , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Proteína Supressora de Tumor p53/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Biossíntese de Proteínas , Capuzes de RNA/metabolismo
10.
J Biol Chem ; 298(10): 102368, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963437

RESUMO

During translation initiation, the underlying mechanism by which the eukaryotic initiation factor (eIF) 4E, eIF4A, and eIF4G components of eIF4F coordinate their binding activities to regulate eIF4F binding to mRNA is poorly defined. Here, we used fluorescence anisotropy to generate thermodynamic and kinetic frameworks for the interaction of uncapped RNA with human eIF4F. We demonstrate that eIF4E binding to an autoinhibitory domain in eIF4G generates a high-affinity binding conformation of the eIF4F complex for RNA. In addition, we show that the nucleotide-bound state of the eIF4A component further regulates uncapped RNA binding by eIF4F, with a four-fold decrease in the equilibrium dissociation constant observed in the presence versus the absence of ATP. Monitoring uncapped RNA dissociation in real time reveals that ATP reduces the dissociation rate constant of RNA for eIF4F by ∼4-orders of magnitude. Thus, release of ATP from eIF4A places eIF4F in a dynamic state that has very fast association and dissociation rates from RNA. Monitoring the kinetic framework for eIF4A binding to eIF4G revealed two different rate constants that likely reflect two conformational states of the eIF4F complex. Furthermore, we determined that the eIF4G autoinhibitory domain promotes a more stable, less dynamic, eIF4A-binding state, which is overcome by eIF4E binding. Overall, our data support a model whereby eIF4E binding to eIF4G/4A stabilizes a high-affinity RNA-binding state of eIF4F and enables eIF4A to adopt a more dynamic interaction with eIF4G. This dynamic conformation may contribute to the ability of eIF4F to rapidly bind and release mRNA during scanning.


Assuntos
Fator de Iniciação 4A em Eucariotos , Fator de Iniciação 4E em Eucariotos , Humanos , Trifosfato de Adenosina/metabolismo , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação Eucariótico 4G/química , Nucleotídeos/química , Ligação Proteica , RNA Mensageiro/metabolismo
11.
Eur Biophys J ; 52(6-7): 497-510, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798395

RESUMO

The cap at the 5'terminus of mRNA is a key determinant of gene expression in eukaryotic cells, which among others is required for cap dependent translation and protects mRNA from degradation. These properties of cap are mediated by several proteins. One of them is 4E-Transporter (4E-T), which plays an important role in translational repression, mRNA decay and P-bodies formation. 4E-T is also one of several proteins that interact with eukaryotic initiation factor 4E (eIF4E), a cap binding protein which is a key component of the translation initiation machinery. The molecular mechanisms underlying the interactions of these two proteins are crucial for mRNA processing. Studying the interactions between human eIF4E1a and the N-terminal fragment of 4E-T that possesses unstructured 4E-binding motifs under non-reducing conditions, we observed that 4E-T preferentially forms an intramolecular disulphide bond. This "disulphide loop" reduces affinity of 4E-T for eIF4E1a by about 300-fold. Considering that only human 4E-T possesses two cysteines located between the 4E binding motifs, we proposed that the disulphide bond may act as a switch to regulate interactions between the two proteins.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Humanos , Ligação Proteica , RNA Mensageiro/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo
12.
Mol Cell ; 57(6): 1074-1087, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25702871

RESUMO

The eIF4E-binding proteins (4E-BPs) represent a diverse class of translation inhibitors that are often deregulated in cancer cells. 4E-BPs inhibit translation by competing with eIF4G for binding to eIF4E through an interface that consists of canonical and non-canonical eIF4E-binding motifs connected by a linker. The lack of high-resolution structures including the linkers, which contain phosphorylation sites, limits our understanding of how phosphorylation inhibits complex formation. Furthermore, the binding mechanism of the non-canonical motifs is poorly understood. Here, we present structures of human eIF4E bound to 4E-BP1 and fly eIF4E bound to Thor, 4E-T, and eIF4G. These structures reveal architectural elements that are unique to 4E-BPs and provide insight into the consequences of phosphorylation. Guided by these structures, we designed and crystallized a 4E-BP mimic that shows increased repressive activity. Our studies pave the way for the rational design of 4E-BP mimics as therapeutic tools to decrease translation during oncogenic transformation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Drosophila/química , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fatores de Iniciação de Peptídeos/química , Fosfoproteínas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Mimetismo Molecular , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(43): 26773-26783, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055213

RESUMO

Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/análogos & derivados , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/química , Guanosina/genética , Guanosina/metabolismo , Humanos , Polirribossomos/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Transcriptoma/genética
14.
Biophys J ; 121(16): 3049-3060, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841142

RESUMO

Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Intrinsicamente Desordenadas , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Fosforilação , Ligação Proteica
15.
Biochem Cell Biol ; 100(4): 276-281, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658546

RESUMO

In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity, and inclusion to the success of the scientific enterprise.


Assuntos
Fator de Iniciação 4E em Eucariotos , Neoplasias , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Neoplasias/genética
16.
Nucleic Acids Res ; 48(15): 8562-8575, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749456

RESUMO

Eukaryotic cellular mRNAs possess a 5' cap structure (m7GpppN) which plays a critical role in translation initiation mediated by eukaryotic initiation factor (eIF) 4F. The heterotrimeric eIF4F complex possesses several activities imparted by its subunits that include cap recognition (by eIF4E), RNA unwinding (eIF4A), and factor/ribosome recruitment (eIF4G). Mammalian cells have paralogs of all three eIF4F subunits and it remains an open question as to whether these all can participate in the process of ribosome recruitment. To query the activities of the eIF4F subunits in translation initiation, we adopted an RNA-tethering assay in which select subunits are recruited to a specific address on a reporter mRNA template. We find that all eIF4F subunits can participate in the initiation process. Based on eIF4G:eIF4A structural information, we also designed obligate dimer pairs to probe the activity of all combinations of eIF4G and eIF4A paralogs. We demonstrate that both eIF4GI and eIF4GII can associate with either eIF4A1 or eIF4A2 to recruit ribosomes to mRNA templates. In combination with eIF4E and eIF4E3, our results indicate the presence of up to eight eIF4F complexes that can operate in translation initiation.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , Sequência de Aminoácidos/genética , Animais , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Células HEK293 , Humanos , Camundongos , Ligação Proteica/genética , Análogos de Capuz de RNA/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética
17.
Nucleic Acids Res ; 48(1): 390-404, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31713626

RESUMO

Internal ribosome entry sites (IRESes) were first reported in RNA viruses and subsequently identified in cellular mRNAs. In this study, IRES activity of the 5'-UTR in Wheat yellow mosaic virus (WYMV) RNA1 was identified, and the 3'-UTR synergistically enhanced this IRES activity via long-distance RNA-RNA interaction between C80U81and A7574G7575. Within the 5'-UTR, the hairpin 1(H1), flexible hairpin 2 (H2) and linker region (LR1) between H1 and H2 played an essential role in cap-independent translation, which is associated with the structural stability of H1, length of discontinuous stems and nucleotide specificity of the H2 upper loop and the long-distance RNA-RNA interaction sites in LR1. The H2 upper loop is a target region of the eIF4E. Cytosines (C55, C66, C105 and C108) in H1 and H2 and guanines (G73, G79 and G85) in LR1 form discontinuous and alternative base pairing to maintain the dynamic equilibrium state, which is used to elaborately regulate translation at a suitable level. The WYMV RNA1 5'-UTR contains a novel IRES, which is different from reported IRESes because of the dynamic equilibrium state. It is also suggested that robustness not at the maximum level of translation is the selection target during evolution of WYMV RNA1.


Assuntos
Regiões 5' não Traduzidas , Fator de Iniciação 4E em Eucariotos/química , Proteínas de Plantas/química , Potyviridae/genética , RNA Viral/química , Ribossomos/genética , Pareamento de Bases , Clonagem Molecular , Citosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Guanina/metabolismo , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyviridae/metabolismo , Biossíntese de Proteínas , Capuzes de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Triticum/virologia
18.
Proc Natl Acad Sci U S A ; 116(48): 24056-24065, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712417

RESUMO

Viruses have transformed our understanding of mammalian RNA processing, including facilitating the discovery of the methyl-7-guanosine (m7G) cap on the 5' end of RNAs. The m7G cap is required for RNAs to bind the eukaryotic translation initiation factor eIF4E and associate with the translation machinery across plant and animal kingdoms. The potyvirus-derived viral genome-linked protein (VPg) is covalently bound to the 5' end of viral genomic RNA (gRNA) and associates with host eIF4E for successful infection. Divergent models to explain these observations proposed either an unknown mode of eIF4E engagement or a competition of VPg for the m7G cap-binding site. To dissect these possibilities, we resolved the structure of VPg, revealing a previously unknown 3-dimensional (3D) fold, and characterized the VPg-eIF4E complex using NMR and biophysical techniques. VPg directly bound the cap-binding site of eIF4E and competed for m7G cap analog binding. In human cells, VPg inhibited eIF4E-dependent RNA export, translation, and oncogenic transformation. Moreover, VPg formed trimeric complexes with eIF4E-eIF4G, eIF4E bound VPg-luciferase RNA conjugates, and these VPg-RNA conjugates were templates for translation. Informatic analyses revealed structural similarities between VPg and the human kinesin EG5. Consistently, EG5 directly bound eIF4E in a similar manner to VPg, demonstrating that this form of engagement is relevant beyond potyviruses. In all, we revealed an unprecedented modality for control and engagement of eIF4E and show that VPg-RNA conjugates functionally engage eIF4E. As such, potyvirus VPg provides a unique model system to interrogate eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Potyvirus/genética , Biossíntese de Proteínas/fisiologia , RNA/química , Ribonucleoproteínas/química , Proteínas Virais/química , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Capuzes de RNA/química , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia
19.
RNA Biol ; 18(12): 2433-2449, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33945405

RESUMO

The mRNA cap-binding protein, eIF4E, mediates the recognition of the mRNA 5' end and, as part of the heterotrimeric eIF4F complex, facilitates the recruitment of the ribosomal subunits to initiate eukaryotic translation. Various regulatory events involving eIF4E and a second eIF4F subunit, eIF4G, are required for proper control of translation initiation. In pathogenic trypanosomatids, six eIF4Es and five eIF4Gs have been described, several forming different eIF4F-like complexes with yet unresolved roles. EIF4E5 is one of the least known of the trypanosomatid eIF4Es and has not been characterized in Leishmania species. Here, we used immunoprecipitation assays, combined with mass-spectrometry, to identify major EIF4E5 interacting proteins in L. infantum. A constitutively expressed, HA-tagged, EIF4E5 co-precipitated mainly with EIF4G1 and binding partners previously described in Trypanosoma brucei, EIF4G1-IP, RBP43 and the 14-3-3 proteins. In contrast, no clear co-precipitation with EIF4G2, also previously reported, was observed. EIF4E5 also co-precipitated with protein kinases, possibly associated with cell-cycle regulation, selected RNA binding proteins and histones. Phosphorylated residues were identified and mapped to the Leishmania-specific C-terminal end. Mutagenesis of the tryptophan residue (W53) postulated to mediate interactions with protein partners or of a neighbouring tryptophan conserved in Leishmania (W45) did not substantially impair the identified interactions. Finally, the crystal structure of Leishmania EIF4E5 evidences remarkable differences in the eIF4G interfacing region, when compared with human eIF4E-1 and with its Trypanosoma orthologue. Mapping of its C-terminal end near the cap-binding site also imply relevant differences in cap-binding function and/or regulation.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/metabolismo , Mapas de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Leishmania/genética , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência
20.
Nature ; 519(7541): 106-9, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25533957

RESUMO

Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLΦ motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded ß-domain that sequesters the helical YXXXXLΦ motif into a partly buried ß-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Sítios de Ligação , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA