Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Genet ; 17(12): e1009982, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928956

RESUMO

Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.


Assuntos
Proteínas Hedgehog/genética , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX9/genética , Polidactilia/genética , Polegar/anormalidades , Fatores de Transcrição HES-1/genética , Proteína Gli3 com Dedos de Zinco/genética , Animais , Divisão Celular/genética , Proliferação de Células/genética , Condrogênese/genética , Cromatina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Modelos Animais de Doenças , Humanos , Botões de Extremidades/crescimento & desenvolvimento , Botões de Extremidades/metabolismo , Mesoderma/crescimento & desenvolvimento , Camundongos , Polidactilia/patologia , Polegar/patologia
2.
Dev Biol ; 486: 44-55, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358504

RESUMO

Adult endochondral bones are prefigured in the embryo as cellular condensations within fields of more loosely distributed skeletal progenitors. How these early condensations are initiated and shaped has remained enigmatic, despite the wealth of research on later stages of cartilage differentiation and endochondral ossification. Using the simple larval zebrafish facial skeleton as a model, we reevaluate the involvement of the master cartilage regulator Sox9 in shaping facial condensations and find it to be largely dispensable. We then use new lineage-tracing tools to definitively show that precartilaginous condensations originate from neighboring clusters of cells termed mesenchymal condensations. These cartilage-generating mesenchymal condensations express a cohort of transcription factors that are also expressed in odontogenic mesenchyme in mammals, including barx1, lhx6a/8a, and pax9. We hypothesized that the position of each mesenchymal condensation determines the axis of growth of its corresponding precartilaginous condensation, thus influencing its final shape. Consistent with this idea, we find that positive Fgf and inhibitory Jagged-Notch signals intersect to precisely position a mesenchymal condensation in the dorsal half of the second pharyngeal arch, with loss of pathway function leading to predictable shape changes in the resulting cartilage element. Deciphering the full array of signals that control the spatial distribution of mesenchymal condensations and regulate their maturation into precartilaginous condensations thus offers a promising approach for understanding the origins of skeletal form.


Assuntos
Condrogênese , Peixe-Zebra , Animais , Cartilagem/metabolismo , Condrogênese/genética , Humanos , Mamíferos/metabolismo , Fator de Transcrição PAX9 , Crânio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 147(21)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32467233

RESUMO

Nonsyndromic clefts of the lip and palate are common birth defects resulting from gene-gene and gene-environment interactions. Mutations in human MSX1 have been linked to orofacial clefting and we show here that Msx1 deficiency causes a growth defect of the medial nasal process (Mnp) in mouse embryos. Although this defect alone does not disrupt lip formation, Msx1-deficient embryos develop a cleft lip when the mother is transiently exposed to reduced oxygen levels or to phenytoin, a drug known to cause embryonic hypoxia. In the absence of interacting environmental factors, the Mnp growth defect caused by Msx1 deficiency is modified by a Pax9-dependent 'morphogenetic regulation', which modulates Mnp shape, rescues lip formation and involves a localized abrogation of Bmp4-mediated repression of Pax9 Analyses of GWAS data revealed a genome-wide significant association of a Gene Ontology morphogenesis term (including assigned roles for MSX1, MSX2, PAX9, BMP4 and GREM1) specifically for nonsyndromic cleft lip with cleft palate. Our data indicate that MSX1 mutations could increase the risk for cleft lip formation by interacting with an impaired morphogenetic regulation that adjusts Mnp shape, or through interactions that inhibit Mnp growth.


Assuntos
Hipóxia/embriologia , Hipóxia/metabolismo , Lábio/embriologia , Fator de Transcrição MSX1/deficiência , Morfogênese , Animais , Proteína Morfogenética Óssea 4/metabolismo , Fenda Labial/embriologia , Fenda Labial/genética , Fenda Labial/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/metabolismo , Humanos , Hipóxia/genética , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Morfogênese/genética , Mutação/genética , Nariz/embriologia , Oxigênio/metabolismo , Fator de Transcrição PAX9/metabolismo , Fenitoína , Respiração , Regulação para Cima/genética
4.
Mol Genet Genomics ; 298(1): 183-199, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36374296

RESUMO

Congenital tooth agenesis (CTA) is one of the most common craniofacial anomalies. Its frequency varies among different population depending upon the genetic heterogeneity. CTA could be of familial or sporadic and syndromic or non-syndromic. Five major genes are found to be associated with non-syndromic CTA, namely PAX9, MSX1, EDA1, AXIN2, and WNT10A. Very few studies have been carried out so far on CTA on this Indian population making this study unique and important. This study was initiated to identify potential pathogenic variant associated with congenital tooth agenesis in an India family with molar tooth agenesis. CTA was investigated and a novel c.336C > G variation was identified in the exon 3 of PAX9, leading to substitution of evolutionary conserved Cys with Trp at 112th amino acid position located at the functionally significant DNA-binding paired domain region. Functional analysis revealed that p.Cys112Trp mutation did not prevent the nuclear localization although mutant protein had higher cytoplasmic retention. EMSA using e5 probe revealed that mutant protein was unable to bind with the paired-domain-binding site. Subsequently, GST pull-down assay revealed lower binding activity of the mutant protein with its known interactor MSX1. These in vitro results were consistent with the computational results. The in vitro and computational observations altogether suggest that c.336C > G (p.Cys112Trp) variation leads to loss of function of PAX9 leading to CTA in this family.


Assuntos
Anodontia , Humanos , Anodontia/genética , Mutação , Éxons , Sítios de Ligação , Índia , Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/química
5.
Oral Dis ; 29(5): 2177-2187, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596231

RESUMO

OBJECTIVES: To investigate the pathogenic gene of a patient with nonsyndromic oligodontia, and analyze its possible pathogenic mechanism. SUBJECTS AND METHODS: The variant was detected by whole exome sequencing (WES) and Sanger sequencing in a family with oligodontia. Bioinformatic and structural analyses were used to analyze variant. Functional studies including western blotting and immunofluorescent analyses and luciferase reporter assay were conducted to explore the functional effects. RESULTS: We identified a novel frameshift variant of PAX9 (c.491-510delGCCCT-ATCACGGCGGCGGCC, p.P165Qfs*145) outside the DNA-binding domain causing an autosomal-dominant nonsyndromic oligodontia in a Chinese family. Bioinformatic and structural analyses revealed that the variant is pathogenic and conserved evolutionarily, and the changes might affect protein stability or folding. Functional studies demonstrate dramatically reduced ability in activating transcription activity of BMP4 promoter and a marked decrease in protein production, as evaluated by western blotting and immunofluorescent analyses. CONCLUSIONS: We found a novel frameshift variant of PAX9 causing nonsyndromic oligodontia in a Chinese family. Our findings indicate that frameshift variants cause loss of function of PAX9 protein during the patterning of the dentition and the subsequent tooth agenesis, providing new molecular insights into the role of frameshift variant of PAX9 and broaden the pathogenic spectrum of PAX9 variants.


Assuntos
Anodontia , População do Leste Asiático , Humanos , Anodontia/genética , Mutação da Fase de Leitura , Proteínas/genética , Fator de Transcrição PAX9/genética , Linhagem , Mutação
6.
PLoS Genet ; 16(8): e1008967, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813698

RESUMO

Dysregulation of ribosome production can lead to a number of developmental disorders called ribosomopathies. Despite the ubiquitous requirement for these cellular machines used in protein synthesis, ribosomopathies manifest in a tissue-specific manner, with many affecting the development of the face. Here we reveal yet another connection between craniofacial development and making ribosomes through the protein Paired Box 9 (PAX9). PAX9 functions as an RNA Polymerase II transcription factor to regulate the expression of proteins required for craniofacial and tooth development in humans. We now expand this function of PAX9 by demonstrating that PAX9 acts outside of the cell nucleolus to regulate the levels of proteins critical for building the small subunit of the ribosome. This function of PAX9 is conserved to the organism Xenopus tropicalis, an established model for human ribosomopathies. Depletion of pax9 leads to craniofacial defects due to abnormalities in neural crest development, a result consistent with that found for depletion of other ribosome biogenesis factors. This work highlights an unexpected layer of how the making of ribosomes is regulated in human cells and during embryonic development.


Assuntos
Deficiências do Desenvolvimento/genética , Desenvolvimento Embrionário/genética , Fator de Transcrição PAX9/genética , Ribossomos/genética , Animais , Nucléolo Celular/genética , Deficiências do Desenvolvimento/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Crista Neural/patologia , Biossíntese de Proteínas/genética , RNA Polimerase II/genética , Ribossomos/patologia , Xenopus/genética , Xenopus/crescimento & desenvolvimento
7.
Clin Oral Investig ; 27(8): 4369-4378, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37184613

RESUMO

OBJECTIVES: The purpose of this study was to identify associations between PAX9 mutations and clinical features of non-syndromic tooth agenesis patients. MATERIALS AND METHODS: Non-syndromic tooth agenesis patients were found to have mutations by whole exome sequencing (WES). Additionally, conservation analysis and three-dimensional structure prediction were also applied to identify mutated proteins. RESULTS: Eight non-syndromic tooth agenesis probands were identified with PAX9 mutations (c.C112T; C.131_134del; c.G151A; c.189delG; c.305delT; c.C365A; c.394delG; c.A679C). All of the probands were missing more than six teeth (oligodontia). The mutations (c.131_134del,p.R44fs; c.189delG,p.T63fs; c.305delT,p.I102fs and c.394delG,p.G123fs) caused premature termination of the PAX9 protein. The c.C112T(p.R38X) mutation created a truncated protein. Bioinformatic prediction demonstrated that the three missense mutations change the PAX9 structure suggesting the corresponding functional impairments. CONCLUSIONS: We reported that eight mutations of PAX9 caused non-syndromic tooth agenesis and analyzed the relationship between PAX9 mutations and non-syndromic tooth agenesis. CLINICAL RELEVANCE: Our study revealed that PAX9 mutations might be the mutations most associated with non-syndromic tooth agenesis in humans, which greatly broadened the mutation spectrum of PAX9-related non-syndromic tooth agenesis.


Assuntos
Anodontia , Dente , Humanos , Mutação , Anodontia/genética , Genótipo , Fenótipo , Proteínas/genética , Fator de Transcrição PAX9/genética
8.
Mol Biol Evol ; 38(5): 1860-1873, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33355664

RESUMO

Eutherian dentition has been the focus of a great deal of studies in the areas of evolution, development, and genomics. The development of molar teeth is regulated by an antero-to-posterior cascade mechanism of activators and inhibitors molecules, where the relative sizes of the second (M2) and third (M3) molars are dependent of the inhibitory influence of the first molar (M1). Higher activator/inhibitor ratios will result in higher M2/M1 or M3/M1. Pax9 has been shown to play a key role in tooth development. We have previously shown that a G-quadruplex in the first intron of Pax9 can modulate the splicing efficiency. Using a sliding window approach with we analyzed the association of the folding energy (Mfe) of the Pax9 first intron with the relative molar sizes in 42 mammalian species, representing 9 orders. The Mfe of two regions located in the first intron of Pax9 were shown to be significantly associated with the M2/M1 and M3/M1 areas and mesiodistal lengths. The first region is located at the intron beginning and can fold into a stable G4 structure, whereas the second is downstream the G4 and 265 bp from intron start. Across species, the first intron of Pax9 varied in G-quadruplex structural stability. The correlations were further increased when the Mfe of the two sequences were added. Our results indicate that this region has a role in the evolution of the mammalian dental pattern by influencing the relative size of the molars.


Assuntos
Evolução Biológica , Eutérios/anatomia & histologia , Dente Molar/anatomia & histologia , Fator de Transcrição PAX9/metabolismo , Animais , Eutérios/metabolismo , Quadruplex G , Íntrons
9.
Biochem Biophys Res Commun ; 598: 74-80, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151207

RESUMO

The histone methyltransferase SET domain bifurcated 1 (SETDB1) catalyzes the trimethylation of lysine 9 of histone H3, thereby regulating gene expression. In this study, we used conditional knockout mice, where Setdb1 was deleted only in neural crest cells (Setdb1fl/fl,Wnt1-Cre + mice), to clarify the role of SETDB1 in palatal development. Setdb1fl/fl,Wnt1-Cre + mice died shortly after birth due to a cleft palate with full penetration. Reduced palatal mesenchyme proliferation was seen in Setdb1fl/fl,Wnt1-Cre + mice, which might be a possible mechanism of cleft palate development. Quantitative RT-PCR and in situ hybridization showed that expression of the Pax9, Bmp4, Bmpr1a, Wnt5a, and Fgf10 genes, known to be important for palatal development, were markedly decreased in the palatal mesenchyme of Setdb1fl/fl,Wnt1-Cre + mice. Along with these phenomena, SMAD1/5/9 phosphorylation was decreased by the loss of Setdb1. Our results demonstrated that SETDB1 is indispensable for palatal development partially through its proliferative effect. Taken together with previous reports that PAX9 regulates BMP signaling during palatal development which implies that loss of Setdb1 may be involved in the cleft palate development by decreasing SMAD-dependent BMP signaling through Pax9.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/fisiologia , Palato/embriologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/genética , Fissura Palatina/genética , Histona-Lisina N-Metiltransferase/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/fisiopatologia , Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/metabolismo , Palato/anormalidades , Palato/patologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Development ; 146(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444215

RESUMO

Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system.


Assuntos
Artérias/embriologia , Região Branquial/irrigação sanguínea , Sistema Cardiovascular/embriologia , Endoderma/embriologia , Morfogênese , Fator de Transcrição PAX9/metabolismo , Faringe/embriologia , Proteínas com Domínio T/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Diferenciação Celular/genética , Embrião de Mamíferos/anormalidades , Deleção de Genes , Redes Reguladoras de Genes , Heterozigoto , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Crista Neural/patologia , Fator de Transcrição PAX9/deficiência , Ligação Proteica , Transdução de Sinais
11.
J Pathol ; 253(4): 384-395, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314197

RESUMO

Alcohol drinking has been established as a major risk factor for esophageal diseases. Our previous study showed that ethanol exposure inhibited PAX9 expression in human esophageal squamous epithelial cells in vitro and in vivo. In this study, we aimed to investigate the molecular pathways through which alcohol drinking suppresses PAX9 in esophageal squamous epithelial cells. We first demonstrated the inhibition of NOTCH by ethanol exposure in vitro. NOTCH regulated PAX9 expression in KYSE510 and KYSE410 cells in vitro and in vivo. RBPJ and NOTCH intracellular domain (NIC) D1 ChIP-PCR confirmed Pax9 as a direct downstream target of NOTCH signaling in mouse esophagus. NOTCH inhibition by alcohol drinking was further validated in mouse esophagus and human tissue samples. In conclusion, ethanol exposure inhibited NOTCH signaling and thus suppressed PAX9 expression in esophageal squamous epithelial cells in vitro and in vivo. Our data support a novel mechanism of alcohol-induced esophageal injury through the inhibition of NOTCH-PAX9 signaling. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Carcinoma de Células Escamosas do Esôfago/patologia , Fator de Transcrição PAX9/efeitos dos fármacos , Receptores Notch/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Etanol/toxicidade , Humanos , Camundongos , Fator de Transcrição PAX9/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
12.
Eur J Oral Sci ; 130(2): e12855, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182440

RESUMO

Nonsyndromic tooth agenesis is associated with variants in several genes. There are numerous genotype-phenotype publications involving many patients and kindreds. Here, we identified six Thai individuals in two families with nonsyndromic tooth agenesis, performed exome sequencing, and conducted functional experiments. Family 1 had four affected members carrying the heterozygous PAX9 variant, c.59C>T (p.Pro20Leu). The p.Pro20Leu was previously reported in two families having four and three affected members. These seven cases and Proband-1 had agenesis of at least three third molars. Family 2 comprised two affected members with agenesis of all 12 molars. Both individuals were heterozygous for c.230G>A (p.Arg77Gln) in PAX9, which has not been reported previously. This variant is predicted to be damaging, evolutionarily conserved, and resides in the PAX9 linking peptide. The BMP4 RNA levels in Proband-1's leukocytes were not significantly different from those in the controls, whereas BMP4 levels observed in Proband-2 were significantly increased. Moreover, the p.Arg77Gln variant demonstrated nuclear localization similar to the wild-type but resulted in significantly impaired transactivation of BMP4, a PAX9 downstream gene. In conclusion, we demonstrate that the PAX9 p.Pro20Leu is highly associated with absent third molars, while the novel PAX9 p.Arg77Gln impairs BMP4 transactivation and is associated with total molar agenesis.


Assuntos
Anodontia , Dente Molar , Fator de Transcrição PAX9 , Anodontia/genética , Proteína Morfogenética Óssea 4/sangue , Humanos , Dente Molar/anormalidades , Mutação , Fator de Transcrição PAX9/genética , Linhagem , Tailândia
13.
PLoS Genet ; 15(10): e1008357, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31609978

RESUMO

Nonsyndromic orofacial cleft (NSOFC) is a severe birth defect that occurs early in embryonic development and includes the subtypes cleft palate only (CPO), cleft lip only (CLO) and cleft lip with cleft palate (CLP). Given a lack of specific genetic factor analysis for CPO and CLO, the present study aimed to dissect the landscape of genetic factors underlying the pathogenesis of these two subtypes using 6,986 cases and 10,165 controls. By combining a genome-wide association study (GWAS) for specific subtypes of CPO and CLO, as well as functional gene network and ontology pathway analysis, we identified 18 genes/loci that surpassed genome-wide significance (P < 5 × 10-8) responsible for NSOFC, including nine for CPO, seven for CLO, two for both conditions and four that contribute to the CLP subtype. Among these 18 genes/loci, 14 are novel and identified in this study and 12 contain developmental transcription factors (TFs), suggesting that TFs are the key factors for the pathogenesis of NSOFC subtypes. Interestingly, we observed an opposite effect of the genetic variants in the IRF6 gene for CPO and CLO. Moreover, the gene expression dosage effect of IRF6 with two different alleles at the same single-nucleotide polymorphism (SNP) plays important roles in driving CPO or CLO. In addition, PAX9 is a key TF for CPO. Our findings define subtypes of NSOFC using genetic factors and their functional ontologies and provide a clue to improve their diagnosis and treatment in the future.


Assuntos
Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Fatores Reguladores de Interferon/genética , Fator de Transcrição PAX9/genética , Alelos , Encéfalo/fisiopatologia , Fenda Labial/fisiopatologia , Fissura Palatina/fisiopatologia , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética
14.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897718

RESUMO

The purpose of this research was to investigate and identify PAX9 gene variants in four Chinese families with non-syndromic tooth agenesis. We identified pathogenic gene variants by whole-exome sequencing (WES) and Sanger sequencing and then studied the effects of these variants on function by bioinformatics analysis and in vitro experiments. Four novel PAX9 heterozygous variants were identified: two missense variants (c.191G > T (p.G64V) and c.350T > G (p.V117G)) and two frameshift variants (c.352delC (p.S119Pfs*2) and c.648_649insC(p.Y217Lfs*100)). The bioinformatics analysis showed that these variants might be pathogenic. The tertiary structure analysis showed that these four variants could cause structural damage to PAX9 proteins. In vitro functional studies demonstrated that (1) the p.Y217Lfs*100 variant greatly affects mRNA stability, thereby affecting endogenous expression; (2) the p. S119Pfs* 2 variant impairs the subcellular localization of the nuclear expression of the wild-type PAX9 protein; and (3) the four variants (p.G64V, p.V117G, p.S119Pfs*2, and p.Y217Lfs*100) all significantly affect the downstream transcriptional activity of the BMP4 gene. In addition, we summarized and analyzed tooth missing positions caused by PAX9 variants and found that the maxillary second molar (84.11%) and mandibular second molar (84.11%) were the most affected tooth positions by summarizing and analyzing the PAX9-related non-syndromic tooth agenesis positions. Our results broaden the variant spectrum of the PAX9 gene related to non-syndromic tooth agenesis and provide useful information for future genetic counseling.


Assuntos
Anodontia , Dente , Anodontia/genética , Heterozigoto , Humanos , Mutação , Fator de Transcrição PAX9/química , Fator de Transcrição PAX9/genética , Linhagem , Proteínas/genética
15.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628401

RESUMO

Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Fator de Transcrição PAX9 , Neoplasias de Cabeça e Pescoço/genética , Humanos , Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/metabolismo , Regiões Promotoras Genéticas , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/metabolismo
16.
Dev Biol ; 458(2): 246-256, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31765609

RESUMO

In this study, we investigated the role of the transcription factor Six2 in palate development. Six2 was selected using the SysFACE tool to predict genes from the 2p21 locus, a region associated with clefting in humans by GWAS, that are likely to be involved in palatogenesis. We functionally validated the predicted role of Six2 in palatogenesis by showing that 22% of Six2 null embryos develop cleft palate. Six2 contributes to palatogenesis by promoting mesenchymal cell proliferation and regulating bone formation. The clefting phenotype in Six2-/- embryos is similar to Pax9 null embryos, so we examined the functional relationship of these two genes. Mechanistically, SIX2 binds to a PAX9 5' upstream regulatory element and activates PAX9 expression. In addition, we identified a human SIX2 coding variant (p.Gly264Glu) in a proband with cleft palate. We show this missense mutation affects the stability of the SIX2 protein and leads to decreased PAX9 expression. The low penetrance of clefting in the Six2 null mouse combined with the mutation in one patient with cleft palate underscores the potential combinatorial interactions of other genes in clefting. Our study demonstrates that Six2 interacts with the developmental gene regulatory network in the developing palate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX9/genética , Fatores de Transcrição/metabolismo , Animais , Fissura Palatina/embriologia , Fissura Palatina/genética , Anormalidades Craniofaciais/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Osteogênese , Fator de Transcrição PAX9/metabolismo , Fatores de Transcrição Box Pareados , Palato/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
17.
BMC Dev Biol ; 21(1): 14, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615475

RESUMO

BACKGROUND: Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. RESULTS: In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9-/- mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9-/- mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9-/- mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9-/- mice. CONCLUSIONS: Msx1 haploinsufficiency mitigates the arch artery defects in Pax9-/- mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9-/- mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.


Assuntos
Sistema Cardiovascular , Haploinsuficiência , Fator de Transcrição MSX1 , Animais , Região Branquial , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Crista Neural , Fator de Transcrição PAX9 , Fenótipo
18.
Biochem Biophys Res Commun ; 534: 359-366, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256983

RESUMO

Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.


Assuntos
Eritropoese/imunologia , Mielopoese/imunologia , Fator de Transcrição PAX9/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Infecções Bacterianas/imunologia , Sistemas CRISPR-Cas , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Granulócitos/imunologia , Imunidade Inata/genética , Imunidade Inata/fisiologia , Mielopoese/genética , Fator de Transcrição PAX9/deficiência , Fator de Transcrição PAX9/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
19.
Clin Genet ; 99(4): 493-502, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249565

RESUMO

Like all developmental processes, odontogenesis is highly complex and dynamically regulated, with hundreds of genes co-expressed in reciprocal networks. Tooth agenesis (missing one or more/all teeth) is a common human craniofacial anomaly and may be caused by genetic variations and/or environmental factors. Variants in PAX9, MSX1, AXIN2, EDA, EDAR, and WNT10A genes are associated with tooth agenesis. Currently, variants in ATF1, DUSP10, CASC8, IRF6, KDF1, GREM2, LTBP3, and components and regulators of WNT signaling WNT10B, LRP6, DKK, and KREMEN1 are at the forefront of interest. Due to the interconnectedness of the signaling pathways of carcinogenesis and odontogenesis, tooth agenesis could be a suitable marker for early detection of cancer predisposition. Variants in genes associated with tooth agenesis could serve as prognostic or therapeutic targets in cancer. This review aims to summarize existing knowledge of development and clinical genetics of teeth. Concurrently, the review proposes possible approaches for future research in this area, with particular attention to roles in monitoring, early diagnosis and therapy of tumors associated with defective tooth development.


Assuntos
Anodontia/genética , Neoplasias/genética , Anodontia/epidemiologia , Biomarcadores Tumorais , Carcinogênese , Carcinoma/epidemiologia , Carcinoma/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Detecção Precoce de Câncer , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Fator de Transcrição MSX1/genética , Neoplasias/epidemiologia , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/genética , Odontogênese , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Fator de Transcrição PAX9/genética , Transdução de Sinais/genética , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/genética , Descoloração de Dente , Via de Sinalização Wnt/genética
20.
Oral Dis ; 27(6): 1468-1477, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33078491

RESUMO

OBJECTIVES: To investigate pathogenic variants of the paired box 9 (PAX9) gene in patients with non-syndromic oligodontia, and the functional impact of these variants. SUBJECTS AND METHODS: Whole exome sequencing and Sanger sequencing were utilized to detect gene variants in a cohort of 80 patients diagnosed with non-syndromic oligodontia. Bioinformatic and conformational analyses, fluorescence microscopy and luciferase reporter assay were employed to explore the functional impact. RESULTS: We identified three novel variants in the PAX9, including two frameshift variants (c.211_212insA; p.I71Nfs*246 and c.236_237insAC; p.T80Lfs*6), and one missense variant (c.229C > G; p.R77G). Familial co-segregation verified an autosomal-dominant inheritance pattern. Conformational analyses revealed that the variants resided in the paired domain, and could cause corresponding structural impairment of the PAX9 protein. Fluorescence microscopy showed abnormal subcellular localizations of frameshift variants, and luciferase assay showed impaired downstream transactivation activities of the bone morphogenetic protein 4 (BMP4) gene in all variants. CONCLUSIONS: Our findings broaden the spectrum of PAX9 variants in patients with non-syndromic oligodontia and support that paired domain structural impairment and the dominant-negative effect are likely the underlying mechanisms of PAX9-related non-syndromic oligodontia. Our findings will facilitate genetic diagnosis and counselling, and help lay the foundation for precise oral health therapies.


Assuntos
Anodontia , Fator de Transcrição PAX9 , Anodontia/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Fator de Transcrição PAX9/genética , Linhagem , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA