Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2217194120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800387

RESUMO

Secreted protein toxins are widely used weapons in conflicts between organisms. Elucidating how organisms genetically adapt to defend themselves against these toxins is fundamental to understanding the coevolutionary dynamics of competing organisms. Within yeast communities, "killer" toxins are secreted to kill nearby sensitive yeast, providing a fitness advantage in competitive growth environments. Natural yeast isolates vary in their sensitivity to these toxins, but to date, no polymorphic genetic factors contributing to defense have been identified. We investigated the variation in resistance to the killer toxin K28 across diverse natural isolates of the Saccharomyces cerevisiae population. Using large-scale linkage mapping, we discovered a novel defense factor, which we named KTD1. We identified many KTD1 alleles, which provided different levels of K28 resistance. KTD1 is a member of the DUP240 gene family of unknown function, which is rapidly evolving in a region spanning its two encoded transmembrane helices. We found that this domain is critical to KTD1's protective ability. Our findings implicate KTD1 as a key polymorphic factor in the defense against K28 toxin.


Assuntos
Micotoxinas , Proteínas de Saccharomyces cerevisiae , Toxinas Biológicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores Matadores de Levedura/genética , Fatores Matadores de Levedura/metabolismo , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Micotoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS Genet ; 17(2): e1009341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539346

RESUMO

Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.


Assuntos
Ascomicetos/genética , Variação Genética , Fatores Matadores de Levedura/genética , Saccharomycetales/genética , Ascomicetos/classificação , Ascomicetos/virologia , Evolução Molecular , Fluxo Gênico , Transferência Genética Horizontal , Filogenia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces/virologia , Saccharomyces cerevisiae/genética , Saccharomycetales/classificação , Saccharomycetales/virologia , Especificidade da Espécie , Totivirus/genética
3.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37935474

RESUMO

Killer toxins are antifungal proteins produced by many species of "killer" yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.


Assuntos
RNA de Cadeia Dupla , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Antifúngicos/metabolismo , Prevalência , Leveduras/genética , Fatores Matadores de Levedura/genética , Fatores Matadores de Levedura/metabolismo
4.
Appl Environ Microbiol ; 88(8): e0203021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35389250

RESUMO

Yeast killer toxins are widely distributed in nature, conferring a competitive advantage to the producer yeasts over nonkiller ones when nutrients are scarce. Most of these toxins are encoded on double-stranded RNAs (dsRNAs) generically called M. L-A members of the viral family Totiviridae act as helper viruses to maintain M, providing the virion proteins that separately encapsidate and replicate L-A and M genomes. M genomes are organized in three regions, a 5' region coding the preprotoxin, followed by an internal poly(A) stretch and a 3' noncoding region. In this work, we report the characterization of K74 toxin encoded on M74 dsRNA from Saccharomyces paradoxus Q74.4. In M74, there is a 5' upstream sequence of 141 nucleotides (nt), which contains regulatory signals for internal translation of the preprotoxin open reading frame (ORF) at the second AUG codon. The first AUG close to the 5' end is not functional. For K74 analysis, M74 viruses were first introduced into laboratory strains of Saccharomyces cerevisiae. We show here that the mature toxin is an α/ß heterodimer linked by disulfide bonds. Though the toxin (or preprotoxin) confers immunity to the carrier, cells with increased K74 loads have a sick phenotype that may lead to cell death. Thus, a fine-tuning of K74 production by the upstream regulatory sequence is essential for the host cell to benefit from the toxin it produces and, at the same time, to safely avoid damage by an excess of toxin. IMPORTANCE Killer yeasts produce toxins to which they are immune by mechanisms not well understood. This self-immunity, however, is compromised in certain strains, which secrete an excess of toxin, leading to sick cells or suicidal phenotypes. Thus, a fine-tuning of toxin production has to be achieved to reach a balance between the beneficial effect of toxin production and the stress imposed on the host metabolism. K74 toxin from S. paradoxus is very active against Saccharomyces uvarum, among other yeasts, but an excess of toxin production is deleterious for the host. Here, we report that the presence of a 5' 141-nt upstream sequence downregulates K74 toxin precursor translation, decreasing toxin levels 3- to 5-fold. Thus, this is a special case of translation regulation performed by sequences on the M74 genome itself, which have been presumably incorporated into the viral RNA during evolution for that purpose.


Assuntos
RNA de Cadeia Dupla , Saccharomyces cerevisiae , Humanos , Fatores Matadores de Levedura/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Saccharomyces , Saccharomyces cerevisiae/genética , Regiões não Traduzidas
5.
Appl Environ Microbiol ; 88(4): e0221321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910561

RESUMO

Killer yeasts and their toxins have many potential applications in environmental, medical, and industrial biotechnology. The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two dsRNA viruses, L-A and M. M encodes the toxin, and L-A provides proteins for expression, replication, and capsids for both viruses. Yeast screening and characterization of this trait are usually performed phenotypically based on their toxin production and immunity. In this study, we describe a simple and specific reverse transcription (RT) multiplex PCR assay for direct diagnosis of the dsRNA totivirus genomes associated with the killer trait in the S. cerevisiae yeast. This method obviates RNA purification steps and primer addition to the RT reaction. Using a mixture of specific primers at the PCR step, this multiplex RT-PCR protocol provided an accurate diagnosis of both L-A and M totivirus in all its known variants, L-A-1/M1, L-A-2/M2, L-A-28/M28, and L-A-lus/Mlus, found in infected killer yeasts. Using this method, the expected L-A-2/M2 totivirus associations in natural wine yeasts cells were identified but, importantly, asymptomatic L-A-2/M2 infected cells were found in addition to unexpected L-A-lus/M2 totiviral associations. IMPORTANCE The killer phenomenon in S. cerevisiae yeast cells provides the opportunity to study host-virus interactions in a eukaryotic model. Therefore, the development of simple methods for their detection significantly facilitates their study. The simplified multiplex RT-PCR protocol described here provides a useful and accurate tool for the genotypic characterization of yeast totiviruses in killer yeast cells. The killer trait depended on two dsRNA totiviruses, L-A and M. Each M dsRNA depends on a specific helper L-A virus. Thus, direct genotyping by the described method also provided valuable insights into L-A/M viral associations and their coadaptational events in nature.


Assuntos
Saccharomyces cerevisiae/virologia , Totivirus , Fatores Matadores de Levedura/genética , Reação em Cadeia da Polimerase Multiplex , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , Transcrição Reversa , Totivirus/genética , Totivirus/isolamento & purificação , Vinho/microbiologia
6.
Curr Genet ; 66(4): 823-833, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32236652

RESUMO

Kti12 (Kluyveromyces lactis toxin insensitive 12) is an evolutionary highly conserved ATPase, crucial for the tRNA-modification activity of the eukaryotic Elongator complex. The protein consists of an N-terminal ATPase and a C-terminal tRNA-binding domain, which are connected by a flexible linker. The precise role of the linker region and its involvement in the communication between the two domains and their activities remain elusive. Here, we analyzed all available Kti12 protein sequences and report the discovery of a subset of Kti12 proteins with abnormally long linker regions. These Kti12 proteins are characterized by a co-occurring lysine to leucine substitution in their Walker A motif, previously thought to be invariable. We show that the K14L substitution lowers the affinity to ATP, but does not affect the catalytic activity of Kti12 at high ATP concentrations. We compare the activity of mutated variants of Kti12 in vitro with complementation assays in vivo in yeast. Ultimately, we compared Kti12 to other known p-loop ATPase family members known to carry a similar deviant Walker A motif. Our data establish Kti12 of Eurotiomycetes as an example of eukaryotic ATPase harboring a significantly deviating but still functional Walker A motif.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Domínio AAA , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Domínio Catalítico , Evolução Molecular , Proteínas Fúngicas/genética , Fatores Matadores de Levedura/farmacologia , Kluyveromyces/metabolismo , Lisina/química , Aprendizado de Máquina , Modelos Moleculares , Mutação , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811035

RESUMO

The killer phenomenon in yeast (Saccharomyces cerevisiae) not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level. Transcriptome and lipidome analyses revealed specific and intrinsic host cell adaptions dependent on the amount of K1 toxin produced. High basal expression of genes coding for osmoprotectants and stress-responsive proteins in a killer yeast strain secreting larger amounts of active K1 toxin implies a generally increased stress tolerance. Moreover, the data suggest that immunity of the host cell against its own toxin is essential for the balanced virus-host interplay providing valuable hints to elucidate the molecular mechanisms underlying K1 immunity and implicating an evolutionarily conserved role for toxin immunity in natural yeast populations.IMPORTANCE The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two RNA viruses. In contrast to bacterial toxin producers, killer yeasts necessitate a specific immunity mechanism against their own toxin because they bear the same receptor populations as sensitive cells. Although the killer phenomenon is highly abundant and has a crucial impact on the structure of yeast communities, the influence of a particular toxin on its host cell has been barely addressed. In our study, we used two derivatives secreting different amount of the killer toxin K1 to analyze potential coadaptional events in this particular host/virus system. Our data underline the dependency of the host cell's ability to cope with extracellular toxin molecules and intracellular K1 molecules provided by the virus. Therefore, this research significantly advances the current understanding of the evolutionarily conserved role of this molecular machinery as an intrinsic selection pressure in yeast populations.


Assuntos
Interações entre Hospedeiro e Microrganismos , Fatores Matadores de Levedura/biossíntese , Saccharomyces cerevisiae/fisiologia , Seleção Genética , Fenótipo , Vírus de RNA/fisiologia , Saccharomyces cerevisiae/genética
8.
Med Mycol ; 58(8): 1102-1113, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32196549

RESUMO

Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70-74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the ß-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fatores Matadores de Levedura/farmacologia , Saccharomycetales/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/análise , Candida/crescimento & desenvolvimento , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Fatores Matadores de Levedura/análise , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Compostos Orgânicos Voláteis/análise , Leveduras/classificação , Leveduras/metabolismo
9.
Yeast ; 36(8): 473-485, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31050852

RESUMO

Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.


Assuntos
Fatores Matadores de Levedura/metabolismo , Leveduras/fisiologia , Antibiose , Biodiversidade , Coevolução Biológica , Ecossistema , Micovírus/fisiologia , Aptidão Genética , Modelos Biológicos , Fenótipo , Leveduras/classificação , Leveduras/metabolismo , Leveduras/virologia
10.
Crit Rev Biotechnol ; 39(5): 603-617, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31023102

RESUMO

Killer toxins are proteins that are often glycosylated and bind to specific receptors on the surface of their target microorganism, which is then killed through a target-specific mode of action. The killer phenotype is widespread among yeast and about 100 yeast killer species have been described to date. The spectrum of action of the killer toxins they produce targets spoilage and pathogenic microorganisms. Thus, they have potential as natural antimicrobials in food and for biological control of plant pathogens, as well as therapeutic agents against animal and human infections. In spite of this wide range of possible applications, their exploitation on the industrial level is still in its infancy. Here, we initially briefly report on the biodiversity of killer toxins and the ecological significance of their production. Their actual and possible applications in the agro-food industry are discussed, together with recent advances in their heterologous production and the manipulation for development of peptide-based therapeutic agents.


Assuntos
Anti-Infecciosos/toxicidade , Citotoxinas/toxicidade , Fatores Matadores de Levedura/toxicidade , Animais , Citotoxinas/genética , Fenômenos Ecológicos e Ambientais , Humanos , Fatores Matadores de Levedura/genética , Peptídeos/toxicidade , Proteínas Recombinantes/toxicidade
11.
Antonie Van Leeuwenhoek ; 112(7): 965-973, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30671692

RESUMO

The juicing industry generates large amounts of waste that mostly lack commercial value and, in the absence of waste treatment policies, produces environmental pollution. Also, microbiological spoilage is a major concern in the wine industry and control tools are limited. Taking these challenges into account, agro-industrial waste coming from ultrafiltrated apple and pear juice were used to grow Saccharomyces eubayanus and to produce its killer toxin (SeKT). A Plackett-Burman screening was performed in order to optimize SeKT production in ultrafiltrated apple and pear juice. The optimized medium was characterized: 75% v/v WUJ, 0.5% m/v KH2PO4, 0.5% m/v MgSO4, 0.5% m/v (NH4)SO4, 0.5% g/L urea, 10% v/v glycerol and 0.1% v/v Triton X-100. SeKT produced in WUJ optimised medium was used to perform killer assays against wine spoilage yeasts and showed antagonistic activity against Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens. Different inhibition percentages against spoilage species in a wine environment (49-69%) were detected and preserved for at least 48 h. For the first time, this work reports the ability of S. eubayanus to produce a killer toxin with potential use as a biocontrol tool in winemaking. Producing SeKT using agro-industrial waste as an alternative medium to cultivate S. eubayanus would have industrial, economic and ecological benefits.


Assuntos
Microbiologia Industrial/métodos , Resíduos Industriais/análise , Fatores Matadores de Levedura/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Fermentação , Microbiologia Industrial/instrumentação , Fatores Matadores de Levedura/farmacologia , Pichia/efeitos dos fármacos , Pichia/crescimento & desenvolvimento , Saccharomyces/química , Saccharomyces/genética , Resíduos/análise
12.
PLoS Genet ; 11(5): e1005005, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973601

RESUMO

Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.


Assuntos
Citoplasma/metabolismo , Fatores Matadores de Levedura/metabolismo , Kluyveromyces/metabolismo , Pichia/metabolismo , Ribonucleases/genética , Saccharomycetales/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Regulação Fúngica da Expressão Gênica , Fatores Matadores de Levedura/genética , Kluyveromyces/genética , Dados de Sequência Molecular , Pichia/genética , Plasmídeos , RNA Fúngico/genética , Ribonucleases/metabolismo , Saccharomycetales/genética
13.
Cell Microbiol ; 18(2): 211-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26247322

RESUMO

Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNA(Gln) and tRNA(Glu) respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S-phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate-limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage.


Assuntos
Dano ao DNA , Fatores Matadores de Levedura/metabolismo , Pichia/enzimologia , Ribonucleases/metabolismo , Ribonucleotídeo Redutases/metabolismo
14.
Microb Cell Fact ; 16(1): 228, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258515

RESUMO

BACKGROUND: Virus infected killer strains of the baker's yeast Saccharomyces cerevisiae secrete protein toxins such as K28, K1, K2 and Klus which are lethal to sensitive yeast strains of the same or related species. K28 is somewhat unique as it represents an α/ß heterodimeric protein of the A/B toxin family which, after having bound to the surface of sensitive target cells, is taken up by receptor-mediated endocytosis and transported through the secretory pathway in a retrograde manner. While the current knowledge on yeast killer toxins is largely based on genetic screens for yeast mutants with altered toxin sensitivity, in vivo imaging of cell surface binding and intracellular toxin transport is still largely hampered by a lack of fluorescently labelled and biologically active killer toxin variants. RESULTS: In this study, we succeeded for the first time in the heterologous K28 preprotoxin expression and production of fluorescent K28 variants in Pichia pastoris. Recombinant P. pastoris GS115 cells were shown to successfully process and secrete K28 variants fused to mCherry or mTFP by high cell density fermentation. The fluorescent K28 derivatives were obtained in high yield and possessed in vivo toxicity and specificity against sensitive yeast cells. In cell binding studies the resulting K28 variants caused strong fluorescence signals at the cell periphery due to toxin binding to primary K28 receptors within the yeast cell wall. Thereby, the ß-subunit of K28 was confirmed to be the sole component required and sufficient for K28 cell wall binding. CONCLUSION: Successful production of fluorescent killer toxin variants of S. cerevisiae by high cell density fermentation of recombinant, K28 expressing strains of P. pastoris now opens the possibility to study and monitor killer toxin cell surface binding, in particular in toxin resistant yeast mutants in which toxin resistance is caused by defects in toxin binding due to alterations in cell wall structure and composition. This novel approach might be easily transferable to other killer toxins from different yeast species and genera. Furthermore, the fluorescent toxin variants described here might likewise represent a powerful tool in future studies to visualize intracellular A/B toxin trafficking with the help of high resolution single molecule imaging techniques.


Assuntos
Fatores Matadores de Levedura/metabolismo , Pichia/genética , Pichia/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Fermentação , Fluorescência , Fatores Matadores de Levedura/química , Fatores Matadores de Levedura/genética , Pichia/química , Pichia/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética
15.
Appl Microbiol Biotechnol ; 101(7): 2931-2942, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28032192

RESUMO

The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and 'greener' food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with ß-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has ß-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.


Assuntos
Biotecnologia/métodos , Citotoxinas/genética , Fatores Matadores de Levedura/genética , Kluyveromyces/metabolismo , Pichia/genética , Parede Celular/efeitos dos fármacos , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Fatores Matadores de Levedura/metabolismo , Fatores Matadores de Levedura/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Vinho/microbiologia , Leveduras/efeitos dos fármacos , Zygosaccharomyces/efeitos dos fármacos
16.
Food Microbiol ; 61: 93-101, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27697174

RESUMO

The antagonistic effects of Debaryomyces hansenii KI2a, D. hansenii MI1a and Wickerhamomyces anomalus BS91 were tested against Monilinia fructigena and Monilinia fructicola in in vitro and in vivo trials. All yeast strains demonstrated antifungal activity at different levels depending on species, strain and pathogen. D hansenii KI2a and W. anomalus BS91 showed the highest biocontrol activity in vitro; the production of hydrolytic enzymes, killer toxins and volatile organic compounds (VOCs) were hypothesized as their main mechanisms of action against pathogens. D hansenii KI2a and W. anomalus BS91 significantly reduced brown rot incidence and severity on peach and plum fruits artificially inoculated with M. fructigena and M. fructicola, especially when applied 24 h before pathogen inoculation. On the opposite, D. hansenii MI1a exhibited weak antagonistic activity towards M. fructigena on peach and plum fruits and was ineffective against M. fructicola. The noticeable ability of W. anomalus BS91 to control brown rot could be also correlated with its high capacity to colonize the wound tissue and to increase its population density. Accordingly, the antagonistic strains of D. hansenii and W. anomalus could be proposed as active ingredients for the development of biofungicides against Monilinia species that are responsible for considerable economic losses in stone fruit crops.


Assuntos
Antibiose , Ascomicetos/fisiologia , Candida/fisiologia , Frutas/microbiologia , Fatores Matadores de Levedura/metabolismo , Doenças das Plantas/prevenção & controle , Prunus/microbiologia , Saccharomyces cerevisiae/fisiologia , Ascomicetos/efeitos dos fármacos , Agentes de Controle Biológico/química , Candida/química , Microbiologia de Alimentos , Doenças das Plantas/microbiologia , Prunus domestica/microbiologia , Saccharomyces cerevisiae/química , Compostos Orgânicos Voláteis/farmacologia
17.
FEMS Yeast Res ; 16(2): fow003, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818855

RESUMO

Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Fatores Matadores de Levedura/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/análise , Viabilidade Microbiana/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Saccharomyces cerevisiae/química
18.
J Appl Microbiol ; 121(1): 207-14, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26939714

RESUMO

AIMS: Over the last few decades, the use of zymocins as biological tools to counteract contamination by spoilage yeast in beverages and food has been widely studied. This study examined the damage induced by the Kwkt and Pikt, two zymocins produced by Kluyeromyces wickerhamii and Wickerhanomyces anomalus, respectively, with antimicrobial activity against Brettanomyces/Dekkera wine-spoilage yeast. METHODS AND RESULTS: The physiological and biochemical characterization of both of these proteins revealed that only Pikt showed a strict relationship between ß-glucosidase activity and killer activity. The minimum inhibitory concentrations and minimum fungicidal concentrations of Kwkt and Pikt showed inhibitory activities against Brettanomyces/Dekkera yeast. Cytofluorimetric evaluation of cell death was based on both cell membrane permeability and cell metabolism, using fluorescence techniques under increasing zymocin levels over different incubation times. The antimicrobial actions of Kwkt and Pikt were also compared with the mode of action of sulphur dioxide. In this last case, the induction of the viable but noncultivable (VBNC) state was confirmed, with the consequent recovery of Brettanomyces yeast after medium replacement. In contrast, Kwkt and Pikt caused irreversible death of these yeast, without recovery of sensitive cells. CONCLUSIONS: Kwkt and Pikt could be proposed as fungistatic or fungicide biocontrol agents in winemaking to control the colonization and development of Brettanomyces/Dekkera yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY: These data support the potential use of zymocins to reduce wine contamination as an alternative to sulphur dioxide that act on sensitive cells. Differently from sulphur dioxide, that could induce a reversible VBNC state, Kwkt and Pikt determine the irreversible damage on sensitive yeasts, ensuring the complete control of spoilage Brettanomyces yeast.


Assuntos
Antifúngicos/farmacologia , Brettanomyces/efeitos dos fármacos , Dekkera/efeitos dos fármacos , Fatores Matadores de Levedura/farmacologia , Dióxido de Enxofre/farmacologia , Testes de Sensibilidade Microbiana
19.
Mol Cell ; 31(2): 278-86, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18657509

RESUMO

RNA healing and sealing enzymes drive informational and stress response pathways entailing repair of programmed 2',3' cyclic PO(4)/5'-OH breaks. Fungal, plant, and phage tRNA ligases use different strategies to discriminate the purposefully broken ends of the anticodon loop. Whereas phage ligase recognizes the tRNA fold, yeast and plant ligases do not and are instead hardwired to seal only the tRNA 3'-OH, 2'-PO(4) ends formed by healing of a cyclic phosphate. tRNA anticodon damage inflicted by secreted ribotoxins such as fungal gamma-toxin underlies a rudimentary innate immune system. Yeast cells are susceptible to gamma-toxin because the sealing domain of yeast tRNA ligase is unable to rectify a break at the modified wobble base of tRNA(Glu(UUC)). Plant andphage tRNA repair enzymes protect yeast from gamma-toxin because they are able to reverse the damage. Our studies underscore how a ribotoxin exploits an Achilles' heel in the target cell's tRNA repair system.


Assuntos
Antídotos/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , RNA de Transferência/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bacteriófagos/enzimologia , Sequência de Bases , Morte Celular/efeitos dos fármacos , Células Eucarióticas/efeitos dos fármacos , Fatores Matadores de Levedura , Dados de Sequência Molecular , Micotoxinas/toxicidade , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Ligase (ATP)/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Toxinas Biológicas/toxicidade
20.
Eukaryot Cell ; 14(4): 406-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25710965

RESUMO

Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of ß-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-ß-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the ß-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that ß-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property.


Assuntos
Fatores Matadores de Levedura/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Polissacarídeos/metabolismo , Esferoplastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA