Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1437-52, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046443

RESUMO

Germ cells are vital for transmitting genetic information from one generation to the next and for maintaining the continuation of species. Here, we analyze the transcriptome of human primordial germ cells (PGCs) from the migrating stage to the gonadal stage at single-cell and single-base resolutions. Human PGCs show unique transcription patterns involving the simultaneous expression of both pluripotency genes and germline-specific genes, with a subset of them displaying developmental-stage-specific features. Furthermore, we analyze the DNA methylome of human PGCs and find global demethylation of their genomes. Approximately 10 to 11 weeks after gestation, the PGCs are nearly devoid of any DNA methylation, with only 7.8% and 6.0% of the median methylation levels in male and female PGCs, respectively. Our work paves the way toward deciphering the complex epigenetic reprogramming of the germline with the aim of restoring totipotency in fertilized oocytes.


Assuntos
Metilação de DNA , Células Germinativas/metabolismo , Transcriptoma , Movimento Celular , Cromossomos Humanos X , Análise por Conglomerados , Embrião de Mamíferos/metabolismo , Feminino , Histonas/metabolismo , Humanos , Masculino , Análise de Componente Principal , Fatores de Transcrição SOX/metabolismo
2.
Mol Cell ; 82(5): 986-1002.e9, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182480

RESUMO

Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Genoma/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Genome Res ; 32(2): 378-388, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34965941

RESUMO

Key transcription factors (TFs) play critical roles in zygotic genome activation (ZGA) during early embryogenesis, whereas genome-wide occupancies of only a few factors have been profiled during ZGA due to the limitation of cell numbers or the lack of high-quality antibodies. Here, we present FitCUT&RUN, a modified CUT&RUN method, in which an Fc fragment of immunoglobulin G is used for tagging, to profile TF occupancy in an antibody-free manner and demonstrate its reliability and robustness using as few as 5000 K562 cells. We applied FitCUT&RUN to zebrafish undergoing embryogenesis to generate reliable occupancy profiles of three known activators of zebrafish ZGA: Nanog, Pou5f3, and Sox19b. By profiling the time-series occupancy of Nanog during zebrafish ZGA, we observed a clear trend toward a gradual increase in Nanog occupancy and found that Nanog occupancy prior to the major phase of ZGA is important for the activation of some early transcribed genes.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Reprodutibilidade dos Testes , Fatores de Transcrição SOX/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Zigoto/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880131

RESUMO

In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.


Assuntos
Bass/genética , Regulação da Temperatura Corporal/genética , Genótipo , Herança Multifatorial , Processos de Determinação Sexual/genética , Animais , Tamanho Corporal , Regulação da Temperatura Corporal/fisiologia , Metilação de DNA , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Gônadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Reprodutibilidade dos Testes , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Temperatura
5.
Semin Cell Dev Biol ; 114: 126-133, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33583737

RESUMO

Emerging evidence has shown that several SOX family transcription factors are key regulators of stem/progenitor cell fates in the mammary gland. These cell-fate regulators are often upregulated in breast cancer and contribute to tumor initiation and progression. They induce lineage plasticity and the epithelial-mesenchymal transition, which promotes tumor invasion, metastasis, and therapeutic resistance. SOX factors act through modulating multiple oncogenic signaling pathways in breast cancer. In addition to the cell-autonomous functions, new evidence suggests they can shape the tumor immune microenvironment. Here, we will review the molecular and functional evidence linking SOX factors with mammary gland development and discuss how these cell-fate regulators are co-opted in breast cancer.


Assuntos
Neoplasias da Mama/genética , Glândulas Mamárias Humanas/metabolismo , Fatores de Transcrição SOX/metabolismo , Feminino , Humanos
6.
Cell ; 133(5): 891-902, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510932

RESUMO

The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this temporal series, regulate key events in many different neuroblast lineages during late neurogenesis. First, they schedule a switch in the cell size and identity of neurons involving the targets Chinmo and Broad Complex. Second, they regulate the time at which neuroblasts undergo Prospero-dependent cell-cycle exit or Reaper/Hid/Grim-dependent apoptosis. Both types of progenitor termination require the combined action of a late phase of the temporal series and indirect feedforward via Castor targets such as Grainyhead and Dichaete. These studies identify the timing mechanism ending CNS proliferation and reveal how aging progenitors transduce bursts of transcription factors into long-lasting changes in cell proliferation and cell identity.


Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Neurônios/citologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Ciclo Celular , Diferenciação Celular , Tamanho Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Esteroides/metabolismo , Fatores de Transcrição SOX
7.
Nucleic Acids Res ; 49(9): 5106-5123, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33939832

RESUMO

The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.


Assuntos
Fertilidade/genética , Regulação da Expressão Gênica , Histona Desacetilases/fisiologia , Meiose/genética , Espermatogênese/genética , Ativação Transcricional , Acetilação , Animais , Reprogramação Celular/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição SOX/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Testículo/metabolismo
8.
PLoS Genet ; 16(1): e1008546, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31940339

RESUMO

In many organisms, early embryonic development is driven by maternally provided factors until the controlled onset of transcription during zygotic genome activation. The regulation of chromatin accessibility and its relationship to gene activity during this transition remain poorly understood. Here, we generated chromatin accessibility maps with ATAC-seq from genome activation until the onset of lineage specification. During this period, chromatin accessibility increases at regulatory elements. This increase is independent of RNA polymerase II-mediated transcription, with the exception of the hypertranscribed miR-430 locus. Instead, accessibility often precedes the transcription of associated genes. Loss of the maternal transcription factors Pou5f3, Sox19b, and Nanog, which are known to be required for zebrafish genome activation, results in decreased accessibility at regulatory elements. Importantly, the accessibility of regulatory regions, especially when established by Pou5f3, Sox19b and Nanog, is predictive for future transcription. Our results show that the maternally provided transcription factors Pou5f3, Sox19b, and Nanog open up chromatin and prime genes for activity during zygotic genome activation in zebrafish.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOX/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Cromatina/genética , Embrião não Mamífero/metabolismo , Impressão Genômica , Peixe-Zebra
9.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614288

RESUMO

The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.


Assuntos
Células-Tronco Adultas , Fatores de Transcrição SOX , Adulto , Humanos , Adolescente , Idoso , Fatores de Transcrição SOX/genética , Envelhecimento/genética , Diferenciação Celular/fisiologia , Células-Tronco
10.
Mol Biol Evol ; 38(8): 3153-3169, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33755150

RESUMO

The Sox family of transcription factors regulates many processes during metazoan development, including stem cell maintenance and nervous system specification. Characterizing the repertoires and roles of these genes can therefore provide important insights into animal evolution and development. We further characterized the Sox repertoires of several arachnid species with and without an ancestral whole-genome duplication and compared their expression between the spider Parasteatoda tepidariorum and the harvestman Phalangium opilio. We found that most Sox families have been retained as ohnologs after whole-genome duplication and evidence for potential subfunctionalization and/or neofunctionalization events. Our results also suggest that Sox21b-1 likely regulated segmentation ancestrally in arachnids, playing a similar role to the closely related SoxB gene, Dichaete, in insects. We previously showed that Sox21b-1 is required for the simultaneous formation of prosomal segments and sequential addition of opisthosomal segments in P. tepidariorum. We studied the expression and function of Sox21b-1 further in this spider and found that although this gene regulates the generation of both prosomal and opisthosomal segments, it plays different roles in the formation of these tagmata reflecting their contrasting modes of segmentation and deployment of gene regulatory networks with different architectures.


Assuntos
Aracnídeos/genética , Evolução Molecular , Fatores de Transcrição SOX/genética , Animais , Aracnídeos/embriologia , Aracnídeos/metabolismo , Feminino , Masculino , Fatores de Transcrição SOX/metabolismo
11.
Trends Genet ; 35(9): 658-671, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288943

RESUMO

The SRY-related (SOX) transcription factor family pivotally contributes to determining cell fate and identity in many lineages. Since the original discovery that SRY deletions cause sex reversal, mutations in half of the 20 human SOX genes have been associated with rare congenital disorders, henceforward called SOXopathies. Mutations are generally de novo, heterozygous, and inactivating, revealing gene haploinsufficiency, but other types, including duplications, have been reported too. Missense variants primarily target the HMG domain, the SOX hallmark that mediates DNA binding and bending, nuclear trafficking, and protein-protein interactions. We here review key clinical and molecular features of SOXopathies and discuss the prospect that the disease family likely involves more SOX genes and larger clinical and genetic spectrums than currently appreciated.


Assuntos
Deficiências do Desenvolvimento/etiologia , Mutação , Fatores de Transcrição SOX/genética , Deficiências do Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência , Humanos , Fatores de Transcrição SOX/química , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição SOXD/genética , Proteína da Região Y Determinante do Sexo/genética
12.
Am J Hum Genet ; 104(2): 246-259, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661772

RESUMO

SOX4, together with SOX11 and SOX12, forms group C of SRY-related (SOX) transcription factors. They play key roles, often in redundancy, in multiple developmental pathways, including neurogenesis and skeletogenesis. De novo SOX11 heterozygous mutations have been shown to cause intellectual disability, growth deficiency, and dysmorphic features compatible with mild Coffin-Siris syndrome. Using trio-based exome sequencing, we here identify de novo SOX4 heterozygous missense variants in four children who share developmental delay, intellectual disability, and mild facial and digital morphological abnormalities. SOX4 is highly expressed in areas of active neurogenesis in human fetuses, and sox4 knockdown in Xenopus embryos diminishes brain and whole-body size. The SOX4 variants cluster in the highly conserved, SOX family-specific HMG domain, but each alters a different residue. In silico tools predict that each variant affects a distinct structural feature of this DNA-binding domain, and functional assays demonstrate that these SOX4 proteins carrying these variants are unable to bind DNA in vitro and transactivate SOX reporter genes in cultured cells. These variants are not found in the gnomAD database of individuals with presumably normal development, but 12 other SOX4 HMG-domain missense variants are recorded and all demonstrate partial to full activity in the reporter assay. Taken together, these findings point to specific SOX4 HMG-domain missense variants as the cause of a characteristic human neurodevelopmental disorder associated with mild facial and digital dysmorphism.


Assuntos
Anormalidades Múltiplas/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição SOXC/genética , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Síndrome de Coffin-Lowry/genética , Estudos de Coortes , Sequência Conservada , DNA/genética , DNA/metabolismo , Feminino , Domínios HMG-Box/genética , Heterozigoto , Humanos , Masculino , Fatores de Transcrição SOX/química , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOXC/química , Fatores de Transcrição SOXC/metabolismo , Ativação Transcricional , Xenopus/anatomia & histologia , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
13.
Genome Res ; 29(3): 383-395, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30674556

RESUMO

The zebrafish embryo is transcriptionally mostly quiescent during the first 10 cell cycles, until the main wave of zygotic genome activation (ZGA) occurs, accompanied by fast chromatin remodeling. At ZGA, homologs of the mammalian stem cell transcription factors (TFs) Pou5f3, Nanog, and Sox19b bind to thousands of developmental enhancers to initiate transcription. So far, how these TFs influence chromatin dynamics at ZGA has remained unresolved. To address this question, we analyzed nucleosome positions in wild-type and maternal-zygotic (MZ) mutants for pou5f3 and nanog by MNase-seq. We show that Nanog, Sox19b, and Pou5f3 bind to the high nucleosome affinity regions (HNARs). HNARs are spanning over 600 bp, featuring high in vivo and predicted in vitro nucleosome occupancy and high predicted propeller twist DNA shape value. We suggest a two-step nucleosome destabilization-depletion model, in which the same intrinsic DNA properties of HNAR promote both high nucleosome occupancy and differential binding of TFs. In the first step, already before ZGA, Pou5f3 and Nanog destabilize nucleosomes at HNAR centers genome-wide. In the second step, post-ZGA, Nanog, Pou5f3, and SoxB1 maintain open chromatin state on the subset of HNARs, acting synergistically. Nanog binds to the HNAR center, whereas the Pou5f3 stabilizes the flanks. The HNAR model will provide a useful tool for genome regulatory studies in a variety of biological systems.


Assuntos
Montagem e Desmontagem da Cromatina , Proteína Homeobox Nanog/metabolismo , Nucleossomos/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOX/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Zigoto/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nanog/genética , Nucleossomos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Fatores de Transcrição SOX/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Am J Pathol ; 191(10): 1837-1850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214505

RESUMO

Deregulated full-length anaplastic lymphoma kinase (ALK) overexpression has been found in some primary solid tumors, but little is known about its role in ovarian high-grade serous carcinoma (HGSC). The current study focused on the functional roles of ALK in HGSC. Cytoplasmic ALK immunoreactivity without chromosomal rearrangement and gene mutations was significantly higher in HGSC compared with non-HGSC-type ovarian carcinomas, and was significantly associated with several unfavorable clinicopathologic factors and poor prognosis. HGSC cell lines stably overexpressing ALK exhibited increased cell proliferation, enhanced cancer stem cell features, and accelerated cell mobility, whereas these phenotypes were abrogated in ALK-knockdown cells. Expression of the nervous system-associated gene, ELAVL3, and the corresponding protein (commonly known as HuC) was significantly increased in cells overexpressing ALK. Expression of SRY-box transcription factor (Sox)2 and Sox3 (genes associated with the neural progenitor population) increased in ALK-overexpressing but not ALK-knockdown cells. Furthermore, overexpression of Sox2 or Sox3 enhanced both ALK and ELAVL3 promoter activities, suggesting the existence of ALK/Sox/HuC signaling loops. Finally, ALK overexpression was attributed to increased expression of neuroendocrine markers, including synaptophysin, CD56, and B-cell lymphoma 2, in HGSC tissues. These findings suggest that overexpression of full-length ALK may influence the biological behavior of HGSC through cooperation with ELAVL3 and Sox factors, leading to the establishment and maintenance of the aggressive phenotypic characteristics of HGSC.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Cistadenocarcinoma Seroso/enzimologia , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citoplasma/enzimologia , Proteína Semelhante a ELAV 3/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Análise Multivariada , Gradação de Tumores , Células-Tronco Neoplásicas/patologia , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Fenótipo , Prognóstico , Intervalo Livre de Progressão , Fatores de Transcrição SOX/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(28): 14055-14064, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235567

RESUMO

Wnt/Wingless (Wg) signaling controls many aspects of animal development and is deregulated in different human cancers. The transcription factor dTcf/Pangolin (Pan) is the final effector of the Wg pathway in Drosophila and has a dual role in regulating the expression of Wg target genes. In the presence of Wg, dTcf/Pan interacts with ß-catenin/Armadillo (Arm) and induces the transcription of Wg targets. In absence of Wg, dTcf/Pan partners with the transcriptional corepressor TLE/Groucho (Gro) and inhibits gene expression. Here, we use the wing imaginal disk of Drosophila as a model to examine the functions that dTcf/Pan plays in a proliferating epithelium. We report a function of dTcf/Pan in growth control and tumorigenesis. Our results show that dTcf/Pan can limit tissue growth in normal development and suppresses tumorigenesis in the context of oncogene up-regulation. We identify the conserved transcription factors Sox box protein 15 (Sox15) and Ftz transcription factor 1 (Ftz-f1) as genes controlled by dTcf/Pan involved in tumor development. In conclusion, this study reports a role for dTcf/Pan as a repressor of normal and oncogenic growth and identifies the genes inducing tumorigenesis downstream of dTcf/Pan.


Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição/genética , Animais , Proteínas do Domínio Armadillo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Epitélio/crescimento & desenvolvimento , Epitélio/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética , Proteína Wnt1/genética
16.
Ecotoxicol Environ Saf ; 242: 113870, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816841

RESUMO

Isoprocarb is a widely used carbamate insecticide in agriculture and aquaculture. Overuse of isoprocarb always leaves toxic residues in soil and water, however, the potential ecotoxicity of isoprocarb to organisms is still confusing. In this study, zebrafish embryo was used as a model to evaluate the toxicity of isoprocarb. Zebrafish embryos (96 hpf) were separately exposed at different concentrations of isoprocarb. The mortality rate, hatchability rate, average heart beat of the zebrafish embryo were separately calculated. Our results suggested that exposure to isoprocarb induced developmental toxicity in zebrafish embryos. HE staining showed that exposure to isoprocarb caused developmental defect in the hindbrain of zebrafish embryos. As expected, the behavioral analysis also showed that the motor ability of zebrafish embryos were significantly inhibited following exposure to isoprocarb. In terms of mechanism, The expressions of genes involved in neurodevelopment signaling pathways, such as foxo3a, gfap, syn2a, elavl3 and sox19b, were inhibited in zebrafish embryos after exposure to isoprocarb. The acetylcholinesterase (AChE) activity was also reduced in isoprocarb-treated zebrafish embryos. Moreover, oxidative stress was induced by increasing the reactive oxygen species (ROS) level and decreasing the activity of antioxidant enzyme (SOD) after exposure to isoprocarb. Expectedly, acridine orange (AO) staining and the detection of some apoptosis-related genes revealed that oxidative stress resulted in apoptosis. In short, the expressions of genes associated with the neurodevelopmental signaling pathway are inhibited, and oxidative stress is also induced in zebrafish embryos after exposure to isoprocarb, which may be the molecular basics of isoprocarb-induced neurotoxicity in zebrafish embryos.


Assuntos
Síndromes Neurotóxicas , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Apoptose/genética , Carbamatos/metabolismo , Embrião não Mamífero/metabolismo , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo , Fatores de Transcrição SOX/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Genomics ; 113(1 Pt 1): 142-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276007

RESUMO

To select candidate genes for goat prolificacy, we managed six multi- and six single-kid female goats at the same feeding level and in the same management mode over a 4-year period. These goats showed stable differences in litter size over five continuous parturition records. Whole-genome re-sequencing was used in all 12 to select candidate genes, namely, AURKA, ENDOG, SOX2, RORA, GJA10, RXFP2, CDC25C, and NANOS3, by the strength of their differentiation signals. Most of the selected genes were enriched in the coiled coil process and ovarian development, which suggests that the coiled coil process has a potential regulatory effect on fecundity. Detection of the distribution of variants and association analyses with litter size in 400 goats showed that NANOS3 exon mutations may lead to a transformation of the protein structure. The variation in CDC25C, ENDOG, and NANOS3 showed a significant association with litter size. These results can contribute to the improvement of reproduction traits in the artificial breeding of goats.


Assuntos
Cabras/genética , Tamanho da Ninhada de Vivíparos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Aurora Quinase A/genética , Endodesoxirribonucleases/genética , Feminino , Cabras/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Fatores de Transcrição SOX/genética , Proteínas Smad/genética , Sequenciamento Completo do Genoma , Fosfatases cdc25/genética
18.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897646

RESUMO

The CatSper channel localizes exclusively in the flagella of sperm cells. The Catsper1 protein, together with three pore units, is essential for the CatSper Channel formation, which produces flagellum hyperactivation and confers sperm fertility. Catsper1 expression is dependent on Sox transcription factors, which can recognize in vitro at least three Sox binding sites on the promoter. Sox transcription factors have calmodulin-binding domains for nuclear importation. Calmodulin (CaM) is affected by the specific inhibitor calmidazolium (CMZ), which prevents the nuclear transport of Sox factors. In this work, we assess the regulation of the Catsper1 promoter in vivo by Sox factors in the murine testis and evaluate the effects of the inhibitor calmidazolium on the expression of the Casper genes, and the motility and fertility of the sperm. Catsper1 promoter has significant transcriptional activity in vivo; on the contrary, three Sox site mutants in the Catsper1 promoter reduced transcriptional activity in the testis. CaM inhibition affects Sox factor nuclear transport and has notable implications in the expression and production of Catsper1, as well as in the motility and fertility capability of sperm. The molecular mechanism described here might conform to the basis of a male contraceptive strategy acting at the transcriptional level by affecting the production of the CatSper channel, a fundamental piece of male fertility.


Assuntos
Canais de Cálcio , Calmodulina , Animais , Canais de Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Regulação para Baixo , Fertilidade , Imidazóis , Masculino , Camundongos , Fatores de Transcrição SOX/genética , Sêmen/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
19.
Semin Cancer Biol ; 67(Pt 1): 30-38, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31539559

RESUMO

Sox proteins are a family of lineage-associated transcription factors. They regulate expression of genes involved in control of self-renewal and multipotency in both developmental and adult stem cells. Overexpression of Sox proteins is frequently observed in many different human cancers. Despite their importance as therapeutic targets, Sox proteins are difficult to 'drug' using structure-based design. However, Sox protein localisation, activity and interaction partners are regulated by a plethora of post-translational modifications (PTMs), such as: phosphorylation, acetylation, sumoylation, methylation, and ubiquitylation. Here we review the various reported post-translational modifications of Sox proteins and their potential functional importance in guiding cell fate processes. The enzymes that regulate these PTMs could be useful targets for anti-cancer drug discovery.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Fatores de Transcrição SOX/antagonistas & inibidores , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOX/química , Fatores de Transcrição SOX/genética , Transdução de Sinais
20.
Semin Cancer Biol ; 67(Pt 1): 105-113, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31288067

RESUMO

Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.


Assuntos
Carcinogênese , Neoplasias/patologia , Fatores de Transcrição SOX/metabolismo , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOX/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA