Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 213(5): 663-668, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018496

RESUMO

Fentanyl and other synthetic opioids are the leading cause of drug-related deaths in the United States. mAbs that selectively target fentanyl and fentanyl analogues offer a promising strategy for treating both opioid-related overdoses and opioid use disorders. To increase the duration of efficacy of a candidate mAb against fentanyl, we selected three sets of mutations in the Fc region of an IgG1 anti-fentanyl mAb (HY6-F9DF215, HY6-F9DHS, HY6-F9YTE) to increase binding to the neonatal Fc receptor (FcRn). The mAb mutants were compared against unmodified (wild-type [WT], HY6-F9WT) anti-fentanyl mAb for fentanyl binding, thermal stability, and FcRn affinity in vitro, and for efficacy against fentanyl and mAb half-life in vivo in mice. Biolayer interferometry showed a >10-fold increase in the affinity for recombinant FcRn of the three mutant mAbs compared with HY6-F9WT. During an acute fentanyl challenge in mice, all FcRn-mutated mAbs provided equal protection against fentanyl-induced effects, and all mAbs reduced brain fentanyl levels compared with the saline group. Serum persistence of the mutant mAbs was tested in Tg276 transgenic mice expressing human FcRn. After administration of 40 mg/kg HY6-F9WT, HY6-F9DF215, HY6-F9DHS, and HY6-F9YTE, the mAbs showed half-lives of 6.3, 26.4, 14.7, and 6.9 d, respectively. These data suggest that modification of mAbs against fentanyl to bind to FcRn with higher affinity can increase their half-life relative to WT mAbs while maintaining efficacy against the toxic effects of fentanyl, further supporting their potential role as a therapeutic treatment option for opioid use disorder and overdose.


Assuntos
Anticorpos Monoclonais , Fentanila , Antígenos de Histocompatibilidade Classe I , Fragmentos Fc das Imunoglobulinas , Mutação , Receptores Fc , Fentanila/imunologia , Animais , Camundongos , Receptores Fc/genética , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Analgésicos Opioides , Meia-Vida , Engenharia de Proteínas , Imunoglobulina G/imunologia
2.
Toxicol Appl Pharmacol ; 486: 116918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570042

RESUMO

Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.


Assuntos
Analgésicos Opioides , Anticorpos Monoclonais , Fentanila , Hemocianinas , Fentanila/imunologia , Animais , Analgésicos Opioides/farmacologia , Anticorpos Monoclonais/farmacologia , Camundongos , Hemocianinas/imunologia , Humanos , Camundongos Endogâmicos BALB C , Masculino , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/imunologia , Distribuição Tecidual , Feminino , Haptenos/imunologia
3.
Toxicol Lett ; 396: 1-10, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588756

RESUMO

The surge in opioid-related deaths, driven predominantly by fentanyl and its synthetic derivatives, has become a critical public health concern, which is particularly evident in the United States. While the situation is less severe in Europe, the European Monitoring Centre for Drugs and Drug Addiction reports a rise in drug overdose deaths, with emerging concerns about the impact of fentanyl-related molecules. Synthetic opioids, initially designed for medical use, have infiltrated illicit markets due to their low production costs and high potency, with carfentanil posing additional threats, including potential chemical weaponization. Existing overdose mitigation heavily relies on naloxone, requiring timely intervention and caregiver presence, while therapeutic prevention strategies face many access challenges. To provide an additional treatment option, we propose the use of a fentanyl-specific monoclonal antibody (mAb), as a non-opioid method of prophylaxis against fentanyl and carfentanil. This mAb shows protection from opioid effects in a pre-clinical murine model. mAbs could emerge as a versatile countermeasure in civilian and biodefense settings, offering a novel approach to combat opioid-associated mortality.


Assuntos
Analgésicos Opioides , Anticorpos Monoclonais , Fentanila , Fentanila/análogos & derivados , Fentanila/imunologia , Animais , Camundongos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA