Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Genet ; 19(2): e1010347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763677

RESUMO

Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.


Assuntos
Ascomicetos , Sordariales , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética , Ascomicetos/genética , Sordariales/genética , Recombinação Genética/genética , Esporos
2.
Proc Natl Acad Sci U S A ; 120(32): e2305094120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523560

RESUMO

Fungi in the basidiomycete genus Malassezia are the most prevalent eukaryotic microbes resident on the skin of human and other warm-blooded animals and have been implicated in skin diseases and systemic disorders. Analysis of Malassezia genomes revealed that key adaptations to the skin microenvironment have a direct genomic basis, and the identification of mating/meiotic genes suggests a capacity to reproduce sexually, even though no sexual cycle has yet been observed. In contrast to other bipolar or tetrapolar basidiomycetes that have either two linked mating-type-determining (MAT) loci or two MAT loci on separate chromosomes, in Malassezia species studied thus far the two MAT loci are arranged in a pseudobipolar configuration (linked on the same chromosome but capable of recombining). By generating additional chromosome-level genome assemblies, and an improved Malassezia phylogeny, we infer that the pseudobipolar arrangement was the ancestral state of this group and revealed six independent transitions to tetrapolarity, seemingly driven by centromere fission or translocations in centromere-flanking regions. Additionally, in an approach to uncover a sexual cycle, Malassezia furfur strains were engineered to express different MAT alleles in the same cell. The resulting strains produce hyphae reminiscent of early steps in sexual development and display upregulation of genes associated with sexual development as well as others encoding lipases and a protease potentially relevant for pathogenesis of the fungus. Our study reveals a previously unseen genomic relocation of mating-type loci in fungi and provides insight toward the identification of a sexual cycle in Malassezia, with possible implications for pathogenicity.


Assuntos
Basidiomycota , Malassezia , Humanos , Malassezia/genética , Evolução Molecular , Basidiomycota/fisiologia , Fungos/genética , Filogenia , Reprodução/genética , Genes Fúngicos Tipo Acasalamento/genética
3.
Nature ; 572(7768): 265-269, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341280

RESUMO

De novo-designed proteins1-3 hold great promise as building blocks for synthetic circuits, and can complement the use of engineered variants of natural proteins4-7. One such designer protein-degronLOCKR, which is based on 'latching orthogonal cage-key proteins' (LOCKR) technology8-is a switch that degrades a protein of interest in vivo upon induction by a genetically encoded small peptide. Here we leverage the plug-and-play nature of degronLOCKR to implement feedback control of endogenous signalling pathways and synthetic gene circuits. We first generate synthetic negative and positive feedback in the yeast mating pathway by fusing degronLOCKR to endogenous signalling molecules, illustrating the ease with which this strategy can be used to rewire complex endogenous pathways. We next evaluate feedback control mediated by degronLOCKR on a synthetic gene circuit9, to quantify the feedback capabilities and operational range of the feedback control circuit. The designed nature of degronLOCKR proteins enables simple and rational modifications to tune feedback behaviour in both the synthetic circuit and the mating pathway. The ability to engineer feedback control into living cells represents an important milestone in achieving the full potential of synthetic biology10,11,12. More broadly, this work demonstrates the large and untapped potential of de novo design of proteins for generating tools that implement complex synthetic functionalities in cells for biotechnological and therapeutic applications.


Assuntos
Retroalimentação Fisiológica , Redes Reguladoras de Genes , Genes Fúngicos Tipo Acasalamento/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Biologia Sintética/métodos , Engenharia Celular , Redes Reguladoras de Genes/genética , Genes Fúngicos Tipo Acasalamento/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
4.
Nucleic Acids Res ; 51(8): 3869-3887, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36951094

RESUMO

A haploid of the fission yeast Schizosaccharomyces pombe expresses either the P or M mating-type, determined by the active, euchromatic, mat1 cassette. Mating-type is switched by Rad51-driven gene conversion of mat1 using a heterochromatic donor cassette, mat2-P or mat3-M. The Swi2-Swi5 complex, a mating-type switching factor, is central to this process by designating a preferred donor in a cell-type-specific manner. Swi2-Swi5 selectively enables one of two cis-acting recombination enhancers, SRE2 adjacent to mat2-P or SRE3 adjacent to mat3-M. Here, we identified two functionally important motifs in Swi2, a Swi6 (HP1 homolog)-binding site and two DNA-binding AT-hooks. Genetic analysis demonstrated that the AT-hooks were required for Swi2 localization at SRE3 to select the mat3-M donor in P cells, while the Swi6-binding site was required for Swi2 localization at SRE2 to select mat2-P in M cells. In addition, the Swi2-Swi5 complex promoted Rad51-driven strand exchange in vitro. Taken together, our results show how the Swi2-Swi5 complex would localize to recombination enhancers through a cell-type specific binding mechanism and stimulate Rad51-driven gene conversion at the localization site.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , DNA Fúngico/genética , DNA Fúngico/metabolismo , Conversão Gênica , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento/genética , Recombinação Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
PLoS Genet ; 18(3): e1010097, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358178

RESUMO

Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.


Assuntos
Basidiomycota , Genes Fúngicos Tipo Acasalamento , Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento/genética , Filogenia
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169080

RESUMO

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Assuntos
Criptococose/genética , Cryptococcus/genética , Epistasia Genética/genética , Evolução Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Hifas/crescimento & desenvolvimento , Morfogênese , Fenótipo , Locos de Características Quantitativas/genética , Reprodução/genética , Reprodução Assexuada
7.
BMC Biol ; 22(1): 108, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714997

RESUMO

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Assuntos
Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Ascomicetos/genética , Ascomicetos/fisiologia , Feromônios/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
8.
BMC Genomics ; 25(1): 1003, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39455957

RESUMO

BACKGROUND: The ubiquity of sex across eukaryotes, given its high costs, strongly suggests it is evolutionarily advantageous. Asexual lineages can avoid, for example, the risks and energetic costs of recombination, but suffer short-term reductions in adaptive potential and long-term damage to genome integrity. Despite these costs, lichenized fungi have frequently evolved asexual reproduction, likely because it allows the retention of symbiotic algae across generations. The lichenized fungal genus Lepraria is thought to be exclusively asexual, while its sister genus Stereocaulon completes a sexual reproductive cycle. A comparison of sister sexual and asexual clades should shed light on the evolution of asexuality in lichens in general, as well as the apparent long-term maintenance of asexuality in Lepraria, specifically. RESULTS: In this study, we assembled and annotated representative long-read genomes from the putatively asexual Lepraria genus and its sexual sister genus Stereocaulon, and added short-read assemblies from an additional 22 individuals across both genera. Comparative genomic analyses revealed that both genera were heterothallic, with intact mating-type loci of both idiomorphs present across each genus. Additionally, we identified and assessed 29 genes involved in meiosis and mitosis and 45 genes that contribute to formation of fungal sexual reproductive structures (ascomata). All genes were present and appeared functional in nearly all Lepraria, and we failed to identify a general pattern of relaxation of selection on these genes across the Lepraria lineage. Together, these results suggest that Lepraria may be capable of sexual reproduction, including mate recognition, meiosis, and production of ascomata. CONCLUSIONS: Despite apparent maintenance of machinery essential for fungal sex, over 200 years of careful observations by lichenologists have produced no evidence of canonical sexual reproduction in Lepraria. We suggest that Lepraria may have instead evolved a form of parasexual reproduction, perhaps by repurposing MAT and meiosis-specific genes. This may, in turn, allow these lichenized fungi to avoid long-term consequences of asexuality, while maintaining the benefit of an unbroken bond with their algal symbionts.


Assuntos
Reprodução Assexuada , Reprodução Assexuada/genética , Filogenia , Ascomicetos/genética , Ascomicetos/fisiologia , Genoma Fúngico , Líquens/genética , Genes Fúngicos Tipo Acasalamento/genética , Genômica
9.
BMC Genomics ; 25(1): 888, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304834

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form mutualistic partnerships with approximately 80% of plant species. AMF, and their diversity, play a fundamental role in plant growth, driving plant diversity, and global carbon cycles. Knowing whether AMF are sexual or asexual has fundamental consequences for how they can be used in agricultural applications. Evidence for and against sexuality in the model AMF, Rhizophagus irregularis, has been proposed. The discovery of a putative mating-type locus (MAT locus) in R. irregularis, and the previously suggested recombination among nuclei of a dikaryon R. irregularis isolate, potentially suggested sexuality. Unless undergoing frequent sexual reproduction, evolution of MAT-locus diversity is expected to be very low. Additionally, in sexual species, MAT-locus evolution is decoupled from the evolution of arbitrary genome-wide loci. RESULTS: We studied MAT-locus diversity of R. irregularis. This was then compared to diversification in a phosphate transporter gene (PTG), that is not involved in sex, and to genome-wide divergence, defined by 47,378 single nucleotide polymorphisms. Strikingly, we found unexpectedly high MAT-locus diversity indicating that either it is not involved in sex, or that AMF are highly active in sex. However, a strongly congruent evolutionary history of the MAT-locus, PTG and genome-wide arbitrary loci allows us to reject both the hypothesis that the MAT-locus is involved in mating and that the R. irregularis lineage is sexual. CONCLUSION: Our finding shapes the approach to developing more effective AMF strains and is highly informative as it suggests that introduced strains applied in agriculture will not exchange DNA with native populations.


Assuntos
Evolução Molecular , Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Micorrizas , Micorrizas/genética , Micorrizas/fisiologia , Genes Fúngicos Tipo Acasalamento/genética , Polimorfismo de Nucleotídeo Único , Glomeromycota/genética , Glomeromycota/fisiologia , Variação Genética , Filogenia , Reprodução Assexuada/genética , Fungos
10.
Fungal Genet Biol ; 170: 103859, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38114017

RESUMO

Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1-1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1-1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching.


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Humanos , Genes Fúngicos Tipo Acasalamento/genética , Reprodução , Fertilidade/genética , Sequências Repetitivas de Ácido Nucleico , Ascomicetos/genética
11.
Arch Microbiol ; 206(10): 412, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313680

RESUMO

The reproductive mode of morels (Morchella spp.) is governed by mating type genes, specifically MAT1-1 and MAT1-2. This study investigated the presence of mating type genes at various growth stages and in different parts of cultivated Morchella sextelata. This study revealed significant fluctuations in the detection ratio of the two mating type genes during ascocarps growth. Single ascospore strains with MAT1-1, MAT1-2 and both mating types were selected for experimentations. Stress stimuli including H2O2, Congo red and NaCl were introduced into the medium. Differences in the cultural and physiological characteristics of single spore strains were analyzed, and mating type genes were identified after subculturing to assess their stability. The results indicated that a total of 297 samples with a single mating type gene were detected in 480 samples selected from the five stages of fruiting body growth, accounting for 61.9%. Stress exposure influenced colony morphology, mycelial growth rate, and biomass, leading to significant increases in malondialdehyde content and osmotic adjustment compounds, including soluble protein and proline. Physiological and biochemical parameters varied among the three mating type strains under different stress conditions. Principal component analysis was used to calculate the weight values, which showed that the MAT1-2 strain exhibited the highest tolerance to chemical stresses, particularly oxidative stress. Subculturing under stress revealed that single mating type strains ceased growth by the 8th generation, whereas both mating type strains could continue to the 15th generation without loss of mating type genes, indicating broader environmental adaptability and higher viability. These findings offer novel insights into mating type gene function and serve as a scientific foundation for the development of high-yield, stress-resistant morel varieties.


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico , Instabilidade Genômica
12.
J Basic Microbiol ; 64(2): e2300495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907429

RESUMO

So far mating type determination in Neurospora crassa requires test crosses with strains of known mating type. We present a simple, quick, and reliable polymerase chain reaction-based method for mating type determination in N. crassa.


Assuntos
Neurospora crassa , Neurospora crassa/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento/genética , Reação em Cadeia da Polimerase
13.
BMC Genomics ; 24(1): 261, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179314

RESUMO

BACKGROUND: Huntiella resides in the Ceratocystidaceae, a family of fungi that accommodates important plant pathogens and insect-associated saprotrophs. Species in the genus have either heterothallic or unisexual (a form of homothallism) mating systems, providing an opportunity to investigate the genetic mechanisms that enable transitions between reproductive strategies in related species. Two newly sequenced Huntiella genomes are introduced in this study and comparative genomics and transcriptomics tools are used to investigate the differences between heterothallism and unisexuality across the genus. RESULTS: Heterothallic species harbored up to seven copies of the a-factor pheromone, each of which possessed numerous mature peptide repeats. In comparison, unisexual Huntiella species had only two or three copies of this gene, each with fewer repeats. Similarly, while the heterothallic species expressed up to 12 copies of the mature α-factor pheromone, unisexual species had up to six copies. These significant differences imply that unisexual Huntiella species do not rely on a mating partner recognition system in the same way that heterothallic fungi do. CONCLUSION: While it is suspected that mating type-independent pheromone expression is the mechanism allowing for unisexual reproduction in Huntiella species, our results suggest that the transition to unisexuality may also have been associated with changes in the genes governing the pheromone pathway. While these results are specifically related to Huntiella, they provide clues leading to a better understanding of sexual reproduction and the fluidity of mating strategies in fungi more broadly.


Assuntos
Ascomicetos , Feromônios , Feromônios/genética , Feromônios/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética , Ascomicetos/genética , Comunicação Celular
14.
Phytopathology ; 113(10): 1934-1945, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37141175

RESUMO

Colletotrichum fungi are a group of damaging phytopathogens with atypical mating type loci (harboring only MAT1-2-1 but not MAT1-1-1) and complex sexual behaviors. Sex pheromones and their cognate G-protein-coupled receptors are conserved regulators of fungal mating. These genes, however, lose function frequently among Colletotrichum species, indicating a possibility that pheromone signaling is dispensable for Colletotrichum sexual reproduction. We have identified two putative pheromone-receptor pairs (PPG1:PRE2, PPG2:PRE1) in C. fructicola, a species that exhibits plus-to-minus mating type switching and plus-minus-mediated mating line development. Here, we report the generation and characterization of gene-deletion mutants for all four genes in both plus and minus strain backgrounds. Single-gene deletion of pre1 or pre2 had no effect on sexual development, whereas their double deletion caused self-sterility in both the plus and minus strains. Moreover, double deletion of pre1 and pre2 caused female sterility in plus-minus outcrossing. Double deletion of pre1 and pre2, however, did not inhibit perithecial differentiation or plus-minus-mediated enhancement of perithecial differentiation. Contrary to the results with pre1 and pre2, double deletion of ppg1 and ppg2 had no effect on sexual compatibility, development, or fecundity. We concluded that pre1 and pre2 coordinately regulate C. fructicola mating by recognizing novel signal molecule(s) distinct from canonical Ascomycota pheromones. The contrasting importance between pheromone receptors and their cognate pheromones highlights the complicated nature of sex regulation in Colletotrichum fungi.


Assuntos
Colletotrichum , Receptores de Feromônios , Receptores de Feromônios/genética , Feromônios/genética , Colletotrichum/genética , Doenças das Plantas , Reprodução , Fertilidade , Genes Fúngicos Tipo Acasalamento/genética , Proteínas Fúngicas/genética
15.
PLoS Genet ; 16(10): e1008627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057400

RESUMO

Mating-type switching is a complex mechanism that promotes sexual reproduction in Saccharomycotina. In the model species Saccharomyces cerevisiae, mating-type switching is initiated by the Ho endonuclease that performs a site-specific double-strand break (DSB) at MAT, repaired by homologous recombination (HR) using one of the two silent mating-type loci, HMLalpha and HMRa. The reasons why all the elements of the mating-type switching system have been conserved in some Saccharomycotina, that do not show a sexual cycle nor mating-type switching, remain unknown. To gain insight on this phenomenon, we used the yeast Candida glabrata, phylogenetically close to S. cerevisiae, and for which no spontaneous and efficient mating-type switching has been observed. We have previously shown that expression of S. cerevisiae's Ho (ScHo) gene triggers mating-type switching in C. glabrata, but this leads to massive cell death. In addition, we unexpectedly found, that not only MAT but also HML was cut in this species, suggesting the formation of multiple chromosomal DSBs upon HO induction. We now report that HMR is also cut by ScHo in wild-type strains of C. glabrata. To understand the link between mating-type switching and cell death in C. glabrata, we constructed strains mutated precisely at the Ho recognition sites. We find that even when HML and HMR are protected from the Ho-cut, introducing a DSB at MAT is sufficient to induce cell death, whereas one DSB at HML or HMR is not. We demonstrate that mating-type switching in C. glabrata can be triggered using CRISPR-Cas9, without high lethality. We also show that switching is Rad51-dependent, as in S. cerevisiae, but that donor preference is not conserved in C. glabrata. Altogether, these results suggest that a DSB at MAT can be repaired by HR in C. glabrata, but that repair is prevented by ScHo.


Assuntos
Candida glabrata/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Endonucleases/genética , Genes Fúngicos Tipo Acasalamento/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Morte Celular/genética , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Regulação Fúngica da Expressão Gênica/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética
16.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2829-2840, 2023 May.
Artigo em Zh | MEDLINE | ID: mdl-37282943

RESUMO

Natural Cordyceps sinensis as an insect-fungal complex, which is developed after Ophiocordyceps sinensis infects a larva of Hepialidae family. Seventeen genotypes of O. sinensis have been identified in natural C. sinensis. This paper summarized the literature reports and GenBank database regarding occurrence and transcription of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in natural C. sinensis, in Hirsutella sinensis(GC-biased Genotype #1 of O. sinensis), to infer the mating pattern of O. sinensis in the lifecycle of natural C. sinensis. The mating-type genes and transcripts of MAT1-1 and MAT1-2 idiomorphs were identified in the metagenomes and metatranscriptomes of natural C. sinensis. However, their fungal sources are unclear because of co-colonization of several genotypes of O. sinensis and multiple fungal species in natural C. sinensis. The mating-type genes of MAT1-1 and MAT1-2 idiomorphs were differentially present in 237 H. sinensis strains, constituting the genetic control of the O. sinensis reproduction. Transcriptional control of the O. sinensis reproduction includes: differential transcription or silencing of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs, and the MAT1-2-1 transcript with unspliced intron I that contains 3 stop codons. Research on the H. sinensis transcriptome demonstrated differential and complementary transcriptions of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in Strains L0106 and 1229, which may become mating partners to accomplish physiological heterothallism. The differential occurrence and transcription of the mating-type genes in H. sinensis are inconsistent with the self-fertilization hypothesis under homothallism or pseudohomothallism, but instead indicate the need of mating partners of the same H. sinensis species, either monoecious or dioecious, for physiological heterothallism, or heterospecific species for hybridization. Multiple GC-and AT-biased genotypes of O. sinensis were identified in the stroma, stromal fertile portion(densely covered with numerous ascocarps) and ascospores of natural C. sinensis. It needs to be further explored if the genome-independent O. sinensis genotypes could become mating partners to accomplish sexual reproduction. S. hepiali Strain FENG experienced differential transcription of the mating-type genes with a pattern complementary to that of H. sinensis Strain L0106. Additional evidence is needed to explore a hybridization possibility between S. hepiali and H. sinensis, whether they are able to break the interspecific reproductive isolation. Genotypes #13~14 of O. sinensis feature large DNA segment reciprocal substitutions and genetic material recombination between 2 heterospecific parental fungi, H. sinensis and an AB067719-type fungus, indicating a possibility of hybridization or parasexuality. Our analysis provides important information at the genetic and transcriptional levels regarding the mating-type gene expression and reproduction physiology of O. sinensis in the sexual life of natural C. sinensis and offers crucial reproductive physiology evidence, to assist in the design of the artificial cultivation of C. sinensis to supplement the increasing scarcity of natural resource.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento/genética , Reprodução/genética
17.
Fungal Genet Biol ; 159: 103664, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026387

RESUMO

The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.


Assuntos
Candida albicans , Genes Fúngicos Tipo Acasalamento , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos Tipo Acasalamento/genética , Feromônios/genética , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Reprodução
18.
PLoS Biol ; 17(3): e2006966, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30865631

RESUMO

While sexual reproduction is pervasive in eukaryotic cells, the strategies employed by fungal species to achieve and complete sexual cycles is highly diverse and complex. Many fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe, are homothallic (able to mate with their own mitotic descendants) because of homothallic switching (HO) endonuclease-mediated mating-type switching. Under laboratory conditions, the human fungal pathogen Candida albicans can undergo both heterothallic and homothallic (opposite- and same-sex) mating. However, both mating modes require the presence of cells with two opposite mating types (MTLa/a and α/α) in close proximity. Given the predominant clonal feature of this yeast in the human host, both opposite- and same-sex mating would be rare in nature. In this study, we report that glucose starvation and oxidative stress, common environmental stresses encountered by the pathogen, induce the development of mating projections and efficiently permit same-sex mating in C. albicans with an "a" mating type (MTLa/a). This induction bypasses the requirement for the presence of cells with an opposite mating type and allows efficient sexual mating between cells derived from a single progenitor. Glucose starvation causes an increase in intracellular oxidative species, overwhelming the Heat Shock transcription Factor 1 (Hsf1)- and Heat shock protein (Hsp)90-mediated stress-response pathway. We further demonstrate that Candida TransActivating protein 4 (Cta4) and Cell Wall Transcription factor 1 (Cwt1), downstream effectors of the Hsf1-Hsp90 pathway, regulate same-sex mating in C. albicans through the transcriptional control of the master regulator of a-type mating, MTLa2, and the pheromone precursor-encoding gene Mating α factor precursor (MFα). Our results suggest that mating could occur much more frequently in nature than was originally appreciated and that same-sex mating could be an important mode of sexual reproduction in C. albicans.


Assuntos
Candida albicans/metabolismo , Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição de Choque Térmico/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
J Appl Microbiol ; 132(6): 4413-4429, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332630

RESUMO

AIMS: To investigate the genetic diversity, population structure and mating-type distribution among the eco-distinct isolates of Magnaporthe oryzae from Karnataka, India. METHODS AND RESULTS: A set of 38 isolates of M. oryzae associated with leaf blast disease of rice were collected from different rice ecosystems of Karnataka, India, and analysed for their diversity at actin, ß-tubulin, calmodulin, translation elongation factor 1-α (TEF-1-α), and internal transcribed spacer (ITS) genes/region. The isolates were grouped into two clusters based on the multilocus sequence diversity, the majority being in cluster-IA (n = 37), and only one isolate formed cluster-IB. Population structure was analysed using 123 SNP data to understand the genetic relationship. Based on K = 2 and ancestry threshold of >70%, blast strains were classified into two subgroups (SG1 and SG2) whereas, based on K = 4 and ancestry threshold of >70%, blast strains were classified into four subgroups (SG1, SG2, SG3 and SG4). We have identified 13 haplotype groups where haplotype group 2 was predominant (n = 20) in the population. The Tajima's and Fu's Fs neutrality tests exhibited many rare alleles. Further, the mating-type analysis was also performed using MAT1 gene-specific primers to find the potentiality of sexual reproduction in different ecosystems. The majority of the isolates (54.5%) had MAT1-2 idiomorph, whereas 45.5% of the isolates possessed MAT1-1 idiomorph. CONCLUSIONS: The present study found the genetically homogenous population of M. oryzae by multilocus sequence analysis. Both mating types, MAT1-1 and MAT1-2, were found within the M. oryzae population of Karnataka. SIGNIFICANCE AND IMPACT OF STUDY: The study on the population structure and sexual mating behaviour of M. oryzae is important in developing region-specific blast-resistant rice cultivars. This is the first report of MAT1 idiomorphs distribution in the M. oryzae population in any Southern state of India.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Ecossistema , Genes Fúngicos Tipo Acasalamento/genética , Índia , Magnaporthe/genética , Tipagem de Sequências Multilocus , Oryza/genética , Doenças das Plantas , Reprodução
20.
Phytopathology ; 112(10): 2224-2235, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35596236

RESUMO

Scab, caused by the plant-pathogenic fungus Venturia effusa, is a major disease of pecan in South America, resulting in loss of quantity and quality of nut yield. Characteristics of the populations of V. effusa in South America are unknown. We used microsatellites to describe the genetic diversity and population structure of V. effusa in South America, and determined the mating type status of the pathogen. The four hierarchically sampled orchard populations from Argentina (AR), Brazil (BRC and BRS), and Uruguay (UR) had moderate to high genotypic and gene diversity. There was evidence of population differentiation (Fst = 0.196) but the correlation between geographic distance and genetic distance was not statistically significant. Genetic differentiation was minimal between the UR, BRC, and BRS populations, and these populations were more clearly differentiated from the AR population. The MAT1-1 and MAT1-2 mating types occurred in all four orchards and their frequencies did not deviate from the 1:1 ratio expected under random mating; however, multilocus linkage equilibrium was rejected in three of the four populations. The population genetics of South American populations of V. effusa has many similarities to the population genetics of V. effusa previously described in the United States. Characterizing the populations genetics and reproductive systems of V. effusa are important to establish the evolutionary potential of the pathogen and, thus, its adaptability-and can provide a basis for informed approaches to utilizing available host resistance and determining phytosanitary needs.


Assuntos
Ascomicetos , Carya , Ascomicetos/genética , Brasil , Carya/genética , Carya/microbiologia , Fungos do Gênero Venturia , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Genética Populacional , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA