RESUMO
The auxin signaling molecule regulates a range of plant growth and developmental processes. The core transcriptional machinery responsible for auxin-mediated responses is conserved across all land plants. Genetic, physiological and molecular exploration in bryophyte and angiosperm model species have shown both qualitative and quantitative differences in auxin responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and sporophyte (angiosperms) generations, however, it is unclear whether such differences derive from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of physiological, developmental and molecular responses to auxin in both generations of the model fern Ceratopteris richardii. We find that auxin response in Ceratopteris gametophytes closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response in flowering plants. This resemblance manifests both at the phenotypic and transcriptional levels. Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus identifies developmental phase, rather than phylogeny, as a major determinant of auxin response properties in land plants.
Assuntos
Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Gleiquênias/crescimento & desenvolvimento , Gleiquênias/genética , Gleiquênias/metabolismo , Filogenia , Pteridaceae/metabolismo , Pteridaceae/genética , Pteridaceae/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais , Transporte BiológicoRESUMO
Plants synthesize natural products via lineage-specific offshoots of their core metabolic pathways, including fatty acid synthesis. Recent studies have shed light on new fatty acid-derived natural products and their biosynthetic pathways in disparate plant species. Inspired by this progress, we set out to develop tools for exploring the evolution of fatty-acid derived products. We sampled multiple species from all major clades of euphyllophytes, including ferns, gymnosperms, and angiosperms (monocots and eudicots), and we show that the compositional profiles (though not necessarily the total amounts) of fatty-acid derived surface waxes from preserved plant specimens are consistent with those obtained from freshly collected tissue in a semi-quantitative and sometimes quantitative manner. We then sampled herbarium specimens representing 57 monocot species to assess the phylogenetic distribution and evolution, of two fatty acid-derived natural products found in that clade: beta-diketones and alkylresorcinols. These chemical data, combined with analyses of 26 monocot genomes, revealed a co-occurrence (though not necessarily a causal relationship) between whole genome duplication and the evolution of diketone synthases from an ancestral alkylresorcinol synthase-like polyketide synthase. Limitations of using herbarium specimen wax profiles as proxies for those of fresh tissue seem likely to include effects from loss of epicuticular wax crystals, effects from preservation techniques, and variation in wax chemical profiles due to genotype or environment. Nevertheless, this work reinforces the widespread utility of herbarium specimens for studying leaf surface waxes (and possibly other chemical classes) and reveals some of the evolutionary history of fatty acid-derived natural products within monocots.
Assuntos
Produtos Biológicos , Ácidos Graxos , Filogenia , Ácidos Graxos/metabolismo , Produtos Biológicos/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Gleiquênias/genética , Gleiquênias/metabolismo , Ceras/metabolismo , Ceras/química , Cycadopsida/genética , Cycadopsida/metabolismo , Evolução MolecularRESUMO
Accurately reconstructing the reticulate histories of polyploids remains a central challenge for understanding plant evolution. Although phylogenetic networks can provide insights into relationships among polyploid lineages, inferring networks may be hindered by the complexities of homology determination in polyploid taxa. We use simulations to show that phasing alleles from allopolyploid individuals can improve phylogenetic network inference under the multispecies coalescent by obtaining the true network with fewer loci compared with haplotype consensus sequences or sequences with heterozygous bases represented as ambiguity codes. Phased allelic data can also improve divergence time estimates for networks, which is helpful for evaluating allopolyploid speciation hypotheses and proposing mechanisms of speciation. To achieve these outcomes in empirical data, we present a novel pipeline that leverages a recently developed phasing algorithm to reliably phase alleles from polyploids. This pipeline is especially appropriate for target enrichment data, where the depth of coverage is typically high enough to phase entire loci. We provide an empirical example in the North American Dryopteris fern complex that demonstrates insights from phased data as well as the challenges of network inference. We establish that our pipeline (PATÉ: Phased Alleles from Target Enrichment data) is capable of recovering a high proportion of phased loci from both diploids and polyploids. These data may improve network estimates compared with using haplotype consensus assemblies by accurately inferring the direction of gene flow, but statistical nonidentifiability of phylogenetic networks poses a barrier to inferring the evolutionary history of reticulate complexes.
Assuntos
Alelos , Filogenia , Poliploidia , Classificação/métodos , Gleiquênias/genética , Gleiquênias/classificação , Simulação por Computador , Algoritmos , Modelos GenéticosRESUMO
The non-seed plants (e.g., charophyte algae, bryophytes, and ferns) have multiple human uses, but their contributions to agriculture and research have lagged behind seed plants. While sharing broadly conserved biology with seed plants and the major crops, non-seed plants sometimes possess alternative molecular and physiological adaptations. These adaptations may guide crop improvements. One such area is the presence of multiple classes of insecticidal proteins found in non-seed plant genomes which are either absent or widely diverged in seed plants. There are documented uses of non-seed plants, and ferns for example have been used in human diets. Among the occasional identifiable toxins or antinutritive components present in non-seed plants, none include these insecticidal proteins. Apart from these discrete risk factors which can be addressed in the safety assessment, there should be no general safety concern about sourcing genes from non-seed plant species.
Assuntos
Gleiquênias , Plantas , Humanos , Plantas/genética , Sementes , Gleiquênias/genética , Controle de Insetos , AgriculturaRESUMO
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Assuntos
Gleiquênias , Gleiquênias/genética , Filogenia , Proteínas de Plantas/química , Glicoproteínas/metabolismo , Parede Celular/metabolismoRESUMO
Genes with similar or related functions in chloroplasts are often arranged in close proximity, forming clusters on chromosomes. These clusters are transcribed coordinated to facilitate the expression of genes with specific function. Our previous study revealed a significant negative correlation between the chloroplast gene expression level of the rare medicinal fern Ophioglossum vulgatum and its evolutionary rates as well as selection pressure. Therefore, in this study, we employed a combination of SMRT and Illumina sequencing technology to analyze the full-length transcriptome sequencing of O. vulgatum for the first time. In particular, we experimentally identified gene clusters based on transcriptome data and investigated the effects of chloroplast gene clustering on expression and evolutionary patterns. The results revealed that the total sequenced data volume of the full-length transcriptome of O. vulgatum amounted to 71,950,652,163 bp, and 110 chloroplast genes received transcript coverage. Nine different types of gene clusters were experimentally identified in their transcripts. The chloroplast cluster genes may cause a decrease in non-synonymous substitution rate and selection pressure, as well as a reduction in transversion rate, transition rate, and their ratio. While expression levels of chloroplast cluster genes in leaf, sporangium, and stem would be relatively elevated. The Mann-Whitney U test indicated statistically significant in the selection pressure, sporangia and leaves groups (P < 0.05). We have contributed novel full-length transcriptome data resources for ferns, presenting new evidence on the effects of chloroplast gene clustering on expression land evolutionary patterns, and offering new theoretical support for transgenic research through gene clustering.
Assuntos
Gleiquênias , Genes de Cloroplastos , Genes de Cloroplastos/genética , Evolução Biológica , Perfilação da Expressão Gênica , Transcriptoma , Gleiquênias/genéticaRESUMO
BACKGROUND: Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS: In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS: Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Assuntos
Gleiquênias , Gleiquênias/genética , Transcriptoma , RNA de Cloroplastos , Metabolismo Secundário , Edição de RNA/genética , Lignina , Perfilação da Expressão Gênica , Cloroplastos/genéticaRESUMO
BACKGROUND AND AIMS: In flowering plants, regeneration can be achieved by a variety of approaches, and different sets of transcriptional factors are involved in these processes. However, regeneration in taxa other than flowering plants remains a mystery. Ceratopteris richardii is a representative fern capable of both direct and indirect organogenesis, and we aimed to investigate the genetics underlying the transition from callus proliferation to differentiation. METHODS: Morphological and histological analyses were used to determine the type of regeneration involved. RNA sequencing and differential gene expression were used to investigate how the callus switches from proliferation to differentiation. Phylogenetic analysis and RNA in situ hybridization were used to understand whether transcriptional factors are involved in this transition. KEY RESULTS: The callus formed on nascent leaves and subsequently developed the shoot pro-meristem and shoot meristem, thus completing indirect de novo shoot organogenesis in C. richardii. Genes were differentially expressed during the callus transition from proliferation to differentiation, indicating a role for photosynthesis, stimulus response and transmembrane signalling in this transition and the involvement of almost all cell layers that make up the callus. Transcriptional factors were either downregulated or upregulated, which were generally in many-to-many orthology with genes known to be involved in callus development in flowering plants, suggesting that the genetics of fern callus development are both conserved and divergent. Among them, an STM-like, a PLT-like and an ethylene- and salt-inducible ERF gene3-like gene were expressed simultaneously in the vasculature but not in the other parts of the callus, indicating that the vasculature played a role in the callus transition from proliferation to differentiation. CONCLUSIONS: Indirect de novo shoot organogenesis could occur in ferns, and the callus transition from proliferation to differentiation required physiological changes, differential expression of transcriptional factors and involvement of the vasculature.
Assuntos
Gleiquênias , Gleiquênias/genética , Fatores de Transcrição/genética , Filogenia , Meristema , RNARESUMO
BACKGROUND AND AIMS: The staghorn fern genus Platycerium is one of the most commonly grown ornamental ferns, and it evolved to occupy a typical pantropical intercontinental disjunction. However, species-level relationships in the genus have not been well resolved, and the spatiotemporal evolutionary history of the genus also needs to be explored. METHODS: Plastomes of all the 18 Platycerium species were newly sequenced. Using plastome data, we reconstructed the phylogenetic relationships among Polypodiaceae members with a focus on Platycerium species, and further conducted molecular dating and biogeographical analyses of the genus. KEY RESULTS: The present analyses yielded a robustly supported phylogenetic hypothesis of Platycerium. Molecular dating results showed that Platycerium split from its sister genus Hovenkampia ~35.2 million years ago (Ma) near the Eocene-Oligocene boundary and began to diverge ~26.3 Ma during the late Oligocene, while multiple speciation events within Platycerium occurred during the middle to late Miocene. Biogeographical analysis suggested that Platycerium originated in tropical Africa and then dispersed eastward to southeast Asia-Australasia and westward to neotropical areas. CONCLUSIONS: Our analyses using a plastid phylogenomic approach improved our understanding of the species-level relationships within Platycerium. The global climate changes of both the Late Oligocene Warming and the cooling following the mid-Miocene Climate Optimum may have promoted the speciation of Platycerium, and transoceanic long-distance dispersal is the most plausible explanation for the pantropical distribution of the genus today. Our study investigating the biogeographical history of Platycerium provides a case study not only for the formation of the pantropical intercontinental disjunction of this fern genus but also the 'out of Africa' origin of plant lineages.
Assuntos
Filogenia , Filogeografia , Plastídeos , Polypodiaceae , Polypodiaceae/genética , Polypodiaceae/classificação , Plastídeos/genética , Evolução Biológica , África , Gleiquênias/genética , Gleiquênias/classificação , Evolução MolecularRESUMO
BACKGROUND: The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE: This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS: Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
Assuntos
Apomixia , Magnoliopsida , Apomixia/genética , Apomixia/fisiologia , Magnoliopsida/genética , Magnoliopsida/fisiologia , Reprodução Assexuada , Evolução Biológica , Gleiquênias/genética , Gleiquênias/fisiologia , Reprodução/fisiologia , Filogenia , Meiose , Plantas/genéticaRESUMO
PREMISE: Apomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long-term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo-sex hybrid ferns. METHODS: We analyzed the genome size of 15 fern species or hybrids ("taxa") via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo-sex hybrid Dryopteris × critica and its 16 apomictically formed offspring. RESULTS: Four of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12-451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation. CONCLUSIONS: Our results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.
Assuntos
Apomixia , Gleiquênias , Tamanho do Genoma , Genoma de Planta , Esporos , Gleiquênias/genética , Gleiquênias/fisiologia , Apomixia/genética , Esporos/fisiologia , Esporos/genética , Hibridização GenéticaRESUMO
PREMISE: Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS: By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS: We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS: The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.
Assuntos
Gleiquênias , Especiação Genética , Hibridização Genética , Filogenia , Gleiquênias/genética , Gleiquênias/classificação , PoliploidiaRESUMO
PREMISE: Molecular studies based on chloroplast markers have questioned the monophyly of the fern genus Pecluma (Polypodioideae, Polypodiaceae), which has several species of Polypodium nested within it. We explored the delimitation of Pecluma and its biogeographic pattern by evaluating the phylogenetic position of four Polypodium species not sequenced thus far and integrating the first fossil evidence of Pecluma. METHODS: Using herbarium material, we applied a genome-skimming approach to obtain a phylogenetic hypothesis of Polypodioideae; assessed the combination of character states observed in the fossil from Miocene Dominican amber using a previously published phylogeny of Polypodioideae based on four plastid markers as framework; calculated divergence times; and conducted an ancestral area estimation. RESULTS: Within Polypodioideae, Pecluma was recovered as sister to Phlebodium. Three of the newly sequenced species-Polypodium otites, P. pinnatissimum, and P. ursipes-were recovered with maximum support within the Pecluma clade, whereas P. christensenii remained within Polypodium. The closest combination of character states of the fossil was found within Pecluma. Our biogeographic analyses suggest an Eocene origin of the genus in South America, with several subsequent Oligocene and Miocene colonization events to Mexico-Central America and to the West Indies. CONCLUSIONS: Although the circumscription of Pecluma is still challenging, our results elucidate the origin and age of the genus. The newly described fossil, Pecluma hispaniolae sp. nov., supports the hypothesis that the epiphytic communities of the Greater Antilles exhibit a constant generic composition since the Miocene. We propose new combinations (Pecluma otites, Pecluma pinnatissima, and Pecluma ursipes) to accommodate three species previously classified in Polypodium.
Assuntos
Âmbar , Evolução Biológica , Fósseis , Filogenia , Fósseis/anatomia & histologia , Polypodiaceae/genética , Polypodiaceae/anatomia & histologia , Gleiquênias/genética , Gleiquênias/classificação , Genomas de PlastídeosRESUMO
Haploid sporophytes of Anisocampium niponicum with 2n = 40, were produced artificially by induced apogamy in vitro. They were subsequently transplanted into pots and two of them have been cultivated for the investigation of sporogenesis and/or production of chimera for more than 20 years. Haploid A. niponicum is sterile, but an abnormal chimeric pinnule that developed spontaneously in a single frond produced sporangia with spores. Each sporangium bore approximately 32 spores that were almost uniform in size. Sowing of these spores resulted in 50 gametophytes. Of 20 gametophytes cultured individually, five produced sporophytes apogamously after eight months. Both the gametophytes and subsequent apogamous sporophytes showed a chromosome number of 2n = 40. Our study demonstrates that a haploid sporophyte offspring can be produced from a haploid mother sporophyte via haploid spores. Since asexual reproduction is a prominent evolutionary process in ferns, the reproduction of a haploid A. niponicum sporophyte by unreduced spore formation might help to elucidate how apogamous ferns occur and evolve.
Assuntos
Gleiquênias , Haploidia , Gleiquênias/genética , Reprodução , Esporos , Células Germinativas VegetaisRESUMO
The fern independent gametophytes that can maintain populations by vegetative reproduction without conspecific sporophytes have been considered an unusual phenomenon found in some epiphytic or epilithic species of Hymenophyllaceae, Pteridaceae, Lomariopsidaceae, and Polypodiaceae. By chance, the discovery of mysterious strap-like gametophytes on Izu-Oshima Island, Japan, has led to the hypothesis that Hymenasplenium murakami-hatanakae, a fern species belonging to Aspleniaceae, can also form independent gametophytes. Our investigation revealed gametophyte populations of H. murakami-hatanakae on three islands in the Izu Islands. Based on chloroplast DNA analysis of the gametophyte and sporophyte populations, the gametophytes were found to be maintained by vegetative reproduction without a new supply of spores from sporophytes. A comparison of the surrounding vegetation at the collection sites showed that environmental factors such as light and humidity may influence the maintenance of gametophyte populations. These results clearly show that H. murakami-hatanakae is one of the ferns capable of forming independent gametophytes. This is the first report of independent gametophytes from the suborder Aspleniineae (eupolypod II). The discovery of the independent gametophyte within a phylogenetic lineage previously thought not to form independent gametophytes will provide important insights into the morphological and functional evolution of gametophytes in ferns.
Assuntos
Evolução Biológica , Gleiquênias , Células Germinativas Vegetais , Células Germinativas Vegetais/fisiologia , Gleiquênias/genética , Gleiquênias/fisiologia , Japão , Filogenia , DNA de Cloroplastos/genética , ReproduçãoRESUMO
The contrasting genome size between homosporous and heterosporous plants is fascinating. Different from the heterosporous seed plants and mainly homosporous ferns, the lycophytes are either heterosporous (Isoetales and Selaginellales) or homosporous (Lycopodiales). Many lycophytes are the resource plants of Huperzine A (HupA) which is invaluable for treating Alzheimer's disease. For the seed-free vascular plants, several high-quality genomes of heterosporous Selaginella, homosporous ferns (maidenhair fern, monkey spider tree fern), and heterosporous ferns (Azolla) have been published and provided important insights into the origin and evolution of early land plants. However, the homosporous lycophyte genome has not been decoded. Here, we assembled the first homosporous lycophyte genome and conducted comparative genomic analyses by applying a reformed pipeline for filtering out non-plant sequences. The obtained genome size of Lycopodium clavatum is 2.30 Gb, distinguished in more than 85% repetitive elements of which 62% is long terminal repeat (LTR). This study disclosed a high birth rate and a low death rate of the LTR-RTs in homosporous lycophytes, but the opposite occurs in heterosporous lycophytes. we propose that the recent activity of LTR-RT is responsible for the immense genome size variation between homosporous and heterosporous lycophytes. By combing Ks analysis with a phylogenetic approach, we discovered two whole genome duplications (WGD). Morover, we identified all the five recognized key enzymes for the HupA biosynthetic pathway in the L. clavatum genome, but found this pathway incomplete in other major lineages of land plants. Overall, this study is of great importance for the medicinal utilization of lycophytes and the decoded genome data will be a key cornerstone to elucidate the evolution and biology of early vascular land plants.
Assuntos
Embriófitas , Gleiquênias , Filogenia , Tamanho do Genoma , Plantas/genética , Gleiquênias/genética , Embriófitas/genética , Sequências Repetidas Terminais , Evolução MolecularRESUMO
BACKGROUND: Azolla is an important aquatic fern whose agronomic potential has not been fully exploited in Uganda. This study aimed at determining the genetic variation in the Azolla species existing in Uganda and the factors influencing their distribution in the different agro-ecological zones of Uganda. Molecular characterization was preferred in this study because of its efficiency in detecting variations among closely related species. RESULTS: Four species of Azolla were identified in Uganda with 100, 93.36, 99.22 and 99.39% sequence identities to the reference database sequences of; Azolla mexicana, Azolla microphylla, Azolla filiculoides and Azolla cristata, respectively. These different species were distributed in four out of the ten agro-ecological zones of Uganda which are situated in close vicinity to large water masses. The principal component analysis (PCA) results revealed that maximum rainfall and altitude significantly accounted for the variations in the distribution of Azolla with factor loadings of 0.921 and 0.922, respectively. CONCLUSION: Massive destruction coupled with prolonged disturbance of Azolla's habitat negatively affected its growth, survival and distribution in the country. Therefore, there is a need to develop standard methods that can preserve the various species of Azolla, so as to salvage them for future use, research and reference.
Assuntos
Agricultura , Gleiquênias , Uganda , Altitude , Gleiquênias/genética , Variação GenéticaRESUMO
Knowledge of relationships between phylogenetic structure of a biological assemblage and ecological factors that drive the variation of phylogenetic structure among regions is crucial for understanding the causes of variation in taxonomic composition and richness among regions, but this knowledge is lacking for the global flora of ferns. Here, we fill this critical knowledge gap. We divided the globe into 392 geographic units on land, collated species lists of ferns for each geographic unit, and used different phylogenetic metrics (tip- vs basal-weighted) reflecting different evolutionary depths to quantify phylogenetic structure. We then related taxonomic and phylogenetic structure metrics to six climatic variables for ferns as a whole and for two groups of ferns (old clades vs polypods) reflecting different evolutionary histories across the globe and within each continental region. We found that when old clades and polypods were considered separately, temperature-related variables explained more variation in these metrics than did precipitation-related variables in both groups. When analyses were conducted for continental regions separately, this pattern holds in most cases. Climate extremes have a stronger relationship with phylogenetic structure of ferns than does climate seasonality. Climatic variables explained more variation in phylogenetic structure at deeper evolutionary depths.
Assuntos
Clima , Gleiquênias , Evolução Biológica , Gleiquênias/genética , Filogenia , TemperaturaRESUMO
Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS -age distributions and applying substitution rate corrections and by conducting statistical gene tree-species tree reconciliation analyses. Our integrative analyses not only identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree-species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
Assuntos
Gleiquênias , Gleiquênias/genética , Filogenia , Duplicação Gênica , Tamanho do Genoma , Poliploidia , Evolução Molecular , Genoma de PlantaRESUMO
Discovery of cryptic diversity is essential to understanding both the process of speciation and the conservation of species. Determining species boundaries in fern lineages represents a major challenge due to lack of morphologically diagnostic characters and frequent hybridization. Genomic data has substantially enhanced our understanding of the speciation process, increased the resolution of species delimitation studies, and led to the discovery of cryptic diversity. Here, we employed restriction-site-associated DNA sequencing (RAD-seq) and integrated phylogenomic and population genomic analyses to investigate phylogenetic relationships and evolutionary history of 16 tree ferns with marginate scales (Cyatheaceae) from China and Vietnam. We conducted multiple species delimitation analyses using the multispecies coalescent (MSC) model and novel approaches based on genealogical divergence index (gdi) and isolation by distance (IBD). In addition, we inferred species trees using concatenation and several coalescent-based methods, and assessed hybridization patterns and rate of gene flow across the phylogeny. We obtained highly supported and generally congruent phylogenies inferred from concatenated and summary-coalescent methods, and the monophyly of all currently recognized species were strongly supported. Our results revealed substantial evidence of cryptic diversity in three widely distributed Gymnosphaera species, each of which was composite of two highly structure lineages that may correspond to cryptic species. We found that hybridization was fairly common between not only closely related species, but also distantly related species. Collectively, it appears that scaly tree ferns may contain cryptic diversity and hybridization has played an important role throughout the evolutionary history of this group.