Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.896
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 102(2): 859-892, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486392

RESUMO

Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Citoglobina/metabolismo , Células Endoteliais/metabolismo , Globinas/metabolismo , Animais , Humanos , Mioglobina/metabolismo , Neuroglobina/metabolismo
2.
PLoS Genet ; 19(5): e1010727, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216374

RESUMO

We report three novel deletions involving the Multispecies Conserved Sequences (MCS) R2, also known as the Major Regulative Element (MRE), in patients showing the α-thalassemia phenotype. The three new rearrangements showed peculiar positions of the breakpoints. 1) The (αα)ES is a telomeric 110 kb deletion ending inside the MCS-R3 element. 2) The (αα)FG, 984 bp-long, ends 51 bp upstream to MCS-R2; both are associated with a severe α-thalassemia phenotype. 3) The (αα)CT, 5058 bp-long starts at position +93 of MCS-R2 and is the only one associated to a mild α-thalassemia phenotype. To understand the specific role of different segments of the MCS-R2 element and of its boundary regions we carried out transcriptional and expression analysis. Transcriptional analysis of patients' reticulocytes showed that (αα)ES was unable to produce α2-globin mRNA, while a high level of expression of the α2-globin genes (56%) was detected in (αα)CT deletion, characterized by the presence of the first 93 bp of MCS-R2. Expression analysis of constructs containing breakpoints and boundary regions of the deletions (αα)CT and (αα)FG, showed comparable activity both for MCS-R2 and the boundary region (-682/-8). Considering that the (αα)CT deletion, almost entirely removing MCS-R2, has a less severe phenotype than the (αα)FG α0thalassemia deletion, removing both MCS-R2 almost entirely and an upstream 679 bp, we infer for the first time that an enhancer element must exist in this region that helps to increase the expression of the α-globin genes. The genotype-phenotype relationship of other previously published MCS-R2 deletions strengthened our hypothesis.


Assuntos
Talassemia alfa , Humanos , Talassemia alfa/genética , Globinas/genética , Fenótipo , Sequência Conservada , Elementos Facilitadores Genéticos/genética , Genótipo
3.
Mol Ther ; 32(7): 2150-2175, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796706

RESUMO

Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.


Assuntos
Ataxia Cerebelar , Cerebelo , Globinas , Mitocôndrias , Proteínas do Tecido Nervoso , Neuroglobina , Animais , Neuroglobina/metabolismo , Mitocôndrias/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Globinas/metabolismo , Globinas/genética , Cerebelo/metabolismo , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Neurônios/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Homeostase , Fator de Indução de Apoptose/metabolismo , Fator de Indução de Apoptose/genética , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Expressão Gênica
4.
Biochemistry ; 63(4): 523-532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38264987

RESUMO

Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.


Assuntos
Globinas , Diester Fosfórico Hidrolases , Vibrio , Humanos , Diester Fosfórico Hidrolases/genética , Globinas/genética , Proteínas de Bactérias/química , Catálise , GMP Cíclico/metabolismo , Heme/química
5.
Proteins ; 92(6): 720-734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38192262

RESUMO

Our globin census update allows us to refine our vision of globin origin, evolution, and structure to function relationship in the context of the currently accepted tree of life. The modern globin domain originates as a single domain, three-over-three α-helical folded structure before the diversification of the kingdoms of life (Bacteria, Archaea, Eukarya). Together with the diversification of prokaryotes, three monophyletic globin families (M, S, and T) emerged, most likely in Proteobacteria and Actinobacteria, displaying specific sequence and structural features, and spread by vertical and horizontal gene transfer, most probably already present in the last universal common ancestor (LUCA). Non-globin domains were added, and eventually lost again, creating multi-domain structures in key branches of M- (FHb and Adgb) and the vast majority of S globins, which with their coevolved multi-domain architectures, have predominantly "sensor" functions. Single domain T-family globins diverged into four major groups and most likely display functions related to reactive nitrogen and oxygen species (RNOS) chemistry, as well as oxygen storage/transport which drives the evolution of its major branches with their characteristic key distal residues (B10, E11, E7, and G8). M-family evolution also lead to distinctive major types (FHb and Fgb, Ngb, Adgb, GbX vertebrate Gbs), and shows the shift from high oxygen affinity controlled by TyrB10-Gln/AsnE11 likely related to RNOS chemistry in microorganisms, to a moderate oxygen affinity storage/transport function controlled by hydrophobic B10/E11-HisE7 in multicellular animals.


Assuntos
Evolução Molecular , Globinas , Filogenia , Globinas/genética , Globinas/química , Globinas/metabolismo , Humanos , Bactérias/genética , Bactérias/metabolismo , Animais , Archaea/genética , Archaea/metabolismo , Domínios Proteicos , Transferência Genética Horizontal
6.
Biochem Cell Biol ; 102(2): 145-158, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011682

RESUMO

Histone H4 asymmetrically dimethylated at arginine 3 (H4R3me2a) is an active histone mark catalyzed by protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase in vertebrates catalyzing asymmetric dimethylation of arginine. H4R3me2a stimulates the activity of lysine acetyltransferases such as CBP/p300, which catalyze the acetylation of H3K27, a mark of active enhancers, super-enhancers, and promoters. There are a few studies on the genomic location of H4R3me2a. In chicken polychromatic erythrocytes, H4R3me2a is found in introns and intergenic regions and binds to the globin locus control region (a super-enhancer) and globin regulatory regions. In this report, we analyzed chromatin immunoprecipitation sequencing data for the genomic location of H4R3me2a in the breast cancer cell line MCF7. As in avian cells, MCF7 H4R3me2a is present in intronic and intergenic regions. Nucleosomes with H4R3me2a and H3K27ac next to nucleosome-free regions are found at super-enhancers, enhancers, and promoter regions of expressed genes. Genes with critical roles in breast cancer cells have broad domains of nucleosomes with H4R3me2a, H3K27ac, and H3K4me3. Our results are consistent with PRMT1-mediated H4R3me2a playing a key role in the chromatin organization of regulatory regions of vertebrate genomes.


Assuntos
Histonas , Nucleossomos , Animais , Histonas/genética , Histonas/metabolismo , Arginina/genética , DNA Intergênico , Globinas/genética , Globinas/metabolismo , Cromatina , Acetilação
7.
Br J Haematol ; 204(2): 399-401, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37985143

RESUMO

The genetic underpinnings of beta-thalassaemia encompass a myriad of molecular mechanisms. The ability of synonymous mutations, an often-overlooked category of variants, to influence ß-globin expression and phenotypic disease is highlighted by this report by Gorivale et al. Commentary on: Gorivale et al. When a synonymous mutation breaks the silence in a thalassaemia patient. Br J Haematol 2024;204:677-682.


Assuntos
Talassemia , Talassemia beta , Humanos , Mutação Silenciosa , Mutação , Talassemia beta/genética , Globinas beta/genética , Globinas/genética
8.
Blood Cells Mol Dis ; 104: 102761, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271682

RESUMO

ß-Thalassemia is a genetic form of anemia due to mutations in the ß-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of ß-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.


Assuntos
Talassemia beta , Animais , Humanos , Talassemia beta/genética , Talassemia beta/terapia , Eritropoese/genética , Ferro/metabolismo , Globinas/genética , Modelos Animais de Doenças
9.
Blood ; 139(14): 2107-2118, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35090172

RESUMO

The benign condition hereditary persistence of fetal hemoglobin (HPFH) is known to ameliorate symptoms of co-inherited ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. The condition is sometimes associated with point mutations in the fetal globin promoters that disrupt the binding of the repressors BCL11A or ZBTB7A/LRF, which have been extensively studied. HPFH is also associated with a range of deletions within the ß-globin locus that all reside downstream of the fetal HBG2 gene. These deletional forms of HPFH are poorly understood and are the focus of this study. Numerous different mechanisms have been proposed to explain how downstream deletions can boost the expression of the fetal globin genes, including the deletion of silencer elements, of genes encoding noncoding RNA, and bringing downstream enhancer elements into proximity with the fetal globin gene promoters. Here we systematically analyze the deletions associated with both HPFH and a related condition known as δß-thalassemia and propose a unifying mechanism. In all cases where fetal globin is upregulated, the proximal adult ß-globin (HBB) promoter is deleted. We use clustered regularly interspaced short palindromic repeats-mediated gene editing to delete or disrupt elements within the promoter and find that virtually all mutations that reduce ΗΒΒ promoter activity result in elevated fetal globin expression. These results fit with previous models where the fetal and adult globin genes compete for the distal locus control region and suggest that targeting the ΗΒΒ promoter might be explored to elevate fetal globin and reduce sickle globin expression as a treatment of ß-hemoglobinopathies.


Assuntos
Globinas , Talassemia beta , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expressão Gênica , Globinas/metabolismo , Humanos , Fatores de Transcrição/genética , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/terapia
10.
J Reprod Dev ; 70(3): 202-206, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479855

RESUMO

Ovarian fibrosis contributes to age-related ovarian dysfunction. In our previous study, we observed ovarian fibrosis in both obese and aging mice with intracellular lipid droplets in the fibrotic ovaries. Although the importance of mitochondria in ovarian fibrosis has been recognized in pharmacological studies, their role in lipid metabolism remains unclear. Globin peptide (GP), derived from hemoglobin, enhances lipid metabolism in obese mice. This study aimed to elucidate the importance of lipid metabolism in ovarian fibrosis by using GP. Treatment of ovarian stromal cells with GP increased mitochondrial oxygen consumption during ß-oxidation. Lipid accumulation was also observed in the ovaries of granulosa cell-specific Nrg1 knockout mice (gcNrg1KO), and the administration of GP to gcNrg1KO mice for two months reduced ovarian lipid accumulation and fibrosis in addition to restoring the estrous cycle. GP holds promise for mitigating lipid-related ovarian issues and provides a novel approach to safeguarding ovarian health by regulating fibrosis via lipid pathways.


Assuntos
Envelhecimento , Fertilidade , Fibrose , Globinas , Células da Granulosa , Metabolismo dos Lipídeos , Camundongos Knockout , Neuregulina-1 , Animais , Feminino , Camundongos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Fertilidade/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Globinas/metabolismo , Globinas/genética , Neuregulina-1/metabolismo , Neuregulina-1/genética , Ovário/efeitos dos fármacos , Ovário/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Peptídeos/farmacologia
11.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928500

RESUMO

Hell's Gate globin-I (HGb-I) is a thermally stable globin from the aerobic methanotroph Methylacidiphilium infernorum. Here we report that HGb-I interacts with lipids stoichiometrically to induce structural changes in the heme pocket, changing the heme iron distal ligation coordination from hexacoordinate to pentacoordinate. Such changes in heme geometry have only been previously reported for cytochrome c and cytoglobin, linked to apoptosis regulation and enhanced lipid peroxidation activity, respectively. However, unlike cytoglobin and cytochrome c, the heme iron of HGb-I is altered by lipids in ferrous as well as ferric oxidation states. The apparent affinity for lipids in this thermally stable globin is highly pH-dependent but essentially temperature-independent within the range of 20-60 °C. We propose a mechanism to explain these observations, in which lipid binding and stability of the distal endogenous ligand are juxtaposed as a function of temperature. Additionally, we propose that these coupled equilibria may constitute a mechanism through which this acidophilic thermophile senses the pH of its environment.


Assuntos
Temperatura , Concentração de Íons de Hidrogênio , Globinas/química , Globinas/metabolismo , Lipídeos/química , Heme/metabolismo , Heme/química , Conformação Proteica , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
12.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279321

RESUMO

Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, interferon-γ (IFNG) mRNA activates PKR through a 5'-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. Tumor necrosis factor-α (TNF) pre-mRNA encodes within the 3'-untranslated region (3'-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression. Adult and fetal globin genes encode pre-mRNA structures that strongly activate PKR, leading to eIF2α phosphorylation that greatly enhances spliceosome assembly and splicing, yet also structures that silence PKR activation upon splicing to allow for unabated globin mRNA translation essential for life. Regulatory circuits resulting in each case from PKR activation were reviewed previously. Here, we analyze mutations within these genes created to delineate the RNA structures that activate PKR and to deconvolute their folding. Given the critical role of intragenic RNA activators of PKR in gene regulation, such mutations reveal novel potential RNA targets for human disease.


Assuntos
Precursores de RNA , RNA , Humanos , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Biossíntese de Proteínas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , RNA Mensageiro/genética , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Nucleotídeos/metabolismo , Globinas/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
13.
Biophys J ; 122(15): 3117-3132, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37353934

RESUMO

Artificial proteins representing the consensus of a set of homologous sequences have attracted attention for their increased thermodynamic stability and conserved activity. Here, we applied the consensus approach to a b-type heme-binding protein to inspect the contribution of a dissociable cofactor to enhanced stability and the chemical consequences of creating a generic heme environment. We targeted the group 1 truncated hemoglobin (TrHb1) subfamily of proteins for their small size (∼120 residues) and ease of characterization. The primary structure, derived from a curated set of ∼300 representative sequences, yielded a highly soluble consensus globin (cGlbN) enriched in acidic residues. Optical and NMR spectroscopies revealed high-affinity heme binding in the expected site and in two orientations. At neutral pH, proximal and distal iron coordination was achieved with a pair of histidine residues, as observed in some natural TrHb1s, and with labile ligation on the distal side. As opposed to studied TrHb1s, which undergo additional folding upon heme binding, cGlbN displayed the same extent of secondary structure whether the heme was associated with the protein or not. Denaturation required guanidine hydrochloride and showed that apo- and holoprotein unfolded in two transitions-the first (occurring with a midpoint of ∼2 M) was shifted to higher denaturant concentration in the holoprotein (∼3.7 M) and reflected stabilization due to heme binding, while the second transition (∼6.2 M) was common to both forms. Thus, the consensus sequence stabilized the protein but exposed the existence of two separately cooperative subdomains within the globin architecture, masked as one single domain in TrHb1s with typical stabilities. The results suggested ways in which specific chemical or thermodynamic features may be controlled in artificial heme proteins.


Assuntos
Globinas , Hemeproteínas , Globinas/química , Dobramento de Proteína , Termodinâmica , Heme/metabolismo , Desnaturação Proteica
14.
Biochemistry ; 62(18): 2727-2737, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37647623

RESUMO

Proteins have undergone evolutionary processes to achieve optimal stability, increased functionality, and novel functions. Comparative analysis of existent and ancestral proteins provides insights into the factors that influence protein stability and function. Ancestral sequence reconstruction allows us to deduce the amino acid sequences of ancestral proteins. Here, we present the structural and functional characteristics of an ancestral protein, AncMH, reconstructed to be the last common ancestor of hemoglobins and myoglobins. Our findings reveal that AncMH harbors heme and that the heme binds oxygen. Furthermore, we demonstrate that the ferrous heme in AncMH is pentacoordinated, similar to that of human adult hemoglobin and horse myoglobin. A detailed comparison of the heme pocket structure indicates that the heme pocket in AncMH is more similar to that of hemoglobin than that of myoglobin. However, the autoxidation of AncMH is faster than that of both hemoglobin and myoglobin. Collectively, our results suggest that ancestral proteins of hemoglobins and myoglobins evolved in steps, including the hexa- to pentacoordination transition, followed by stabilization of the oxygen-bound form.


Assuntos
Globinas , Heme , Adulto , Humanos , Animais , Cavalos , Globinas/genética , Mioglobina/genética , Sequência de Aminoácidos , Oxigênio
15.
J Clin Immunol ; 43(8): 1873-1880, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37505322

RESUMO

PURPOSE: This study aimed to investigate the correlation between calculated globulin (CG, total protein level minus albumin level) and the gamma globulin fraction (Gamma), obtained from serum protein electrophoresis with serum IgG levels in adults (≥ 18 years). METHODS: Using linear regression models, analyses of CG and Gamma levels correlation with IgG levels in adults were performed. Receiver-operator curves were created to determine cutoff values and the respective sensitivity and specificity measures. RESULTS: A total of 886 samples were analyzed. CG and Gamma were positively and statistically correlated with IgG levels (r2 = 0.4628 for CG, and = 0.7941 for Gamma, p < 0.0001 for both analyses). For the detection of hypogammaglobulinemia, i.e., IgG level below the reference value (6 g/L), a CG cutoff value of 24 g/L showed a sensitivity of 86.2% (95% CI 69.4-94.5) and a specificity of 92% (90.0-93.6). A Gamma cutoff value of 7.15 g/L yielded a sensitivity of 100% (88.3-100) and a specificity of 96.8 (95.3-97.8). CONCLUSION: Both CG and Gamma levels determined by protein electrophoresis analysis may be used to screen for antibody deficiencies in adults, enabling earlier diagnosis of antibody deficiencies in a routine clinical setting.


Assuntos
Agamaglobulinemia , Doenças da Imunodeficiência Primária , Humanos , Adulto , Eletroforese , Globinas , Imunoglobulina G
16.
Lancet ; 399(10343): 2310-2324, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35691301

RESUMO

Thalassaemia is a diverse group of genetic disorders with a worldwide distribution affecting globin chain synthesis. The pathogenesis of thalassaemia lies in the unbalanced globin chain production, leading to ineffective erythropoiesis, increased haemolysis, and deranged iron homoeostasis. The clinical phenotype shows heterogeneity, ranging from close to normal without complications to severe requiring lifelong transfusion support. Conservative treatment with transfusion and iron chelation has transformed the natural history of thalassaemia major into a chronic disease with a prolonged life expectancy, albeit with co-morbidities and substantial disease burden. Curative therapy with allogeneic haematopoietic stem cell transplantation is advocated for suitable patients. The understanding of the pathogenesis of the disease is guiding therapeutic advances. Novel agents have shown efficacy in improving anaemia and transfusion burden, and initial results from gene therapy approaches are promising. Despite scientific developments, worldwide inequality in the access of health resources is a major concern, because most patients live in underserved areas.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Talassemia , Talassemia beta , Globinas , Humanos , Ferro , Talassemia/complicações , Talassemia/terapia , Talassemia beta/complicações , Talassemia beta/terapia
17.
Chem Res Toxicol ; 36(3): 430-437, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36861465

RESUMO

The 4-biphenylnitrenium ion (BPN), a reactive metabolic intermediate of the tobacco smoke carcinogen 4-aminobiphenyl (4-ABP), can react with nucleophilic sulfanyl groups in glutathione (GSH) as well as in proteins. The main site of attack of these S-nucleophiles was predicted using simple orientational rules of aromatic nucleophilic substitution. Thereafter, a series of presumptive 4-ABP metabolites and adducts with cysteine were synthesized, namely, S-(4-amino-3-biphenyl)cysteine (ABPC), N-acetyl-S-(4-amino-3-biphenyl)cysteine (4-amino-3-biphenylmercapturic acid, ABPMA), S-(4-acetamido-3-biphenyl)cysteine (AcABPC), and N-acetyl-S-(4-acetamido-3-biphenyl)cysteine (4-acetamido-3-biphenylmercapturic acid, AcABPMA). Then, globin and urine of rats dosed with a single ip dose of 4-ABP (27 mg/kg b.w.) was analyzed by HPLC-ESI-MS2. ABPC was identified in acid-hydrolyzed globin at levels of 3.52 ± 0.50, 2.74 ± 0.51, and 1.25 ± 0.12 nmol/g globin (mean ± S.D.; n = 6) on days 1, 3, and 8 after dosing, respectively. In the urine collected on day 1 (0-24 h) after dosing, excretion of ABPMA, AcABPMA, and AcABPC amounted to 1.97 ± 0.88, 3.09 ± 0.75, and 3.69 ± 1.49 nmol/kg b.w. (mean ± S.D.; n = 6), respectively. On day 2, excretion of the metabolites decreased by one order of magnitude followed by a slower decrease on day 8. Regarding the possible formation of AcABPC from ABPC, N-acetylation of the amino group at the biphenyl moiety prior to that at cysteine appears to be very unlikely. Thus, the structure of AcABPC indicates the involvement of N-acetyl-4-biphenylnitrenium ion (AcBPN) and/or its reactive ester precursors in in vivo reactions with GSH and protein-bound cysteine. ABPC in globin might become an alternative biomarker of the dose of toxicologically relevant metabolic intermediates of 4-ABP.


Assuntos
Carcinógenos , Poluição por Fumaça de Tabaco , Ratos , Animais , Carcinógenos/química , Globinas/química , Cisteína/química , Compostos de Aminobifenil/química , Nicotiana/química , Fumaça
18.
Mol Ther ; 30(6): 2199-2209, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247584

RESUMO

The globin genes are archetypal tissue-specific genes that are silent in most tissues but for late-stage erythroblasts upon terminal erythroid differentiation. The transcriptional activation of the ß-globin gene is under the control of proximal and distal regulatory elements located on chromosome 11p15.4, including the ß-globin locus control region (LCR). The incorporation of selected LCR elements in lentiviral vectors encoding ß and ß-like globin genes has enabled successful genetic treatment of the ß-thalassemias and sickle cell disease. However, recent occurrences of benign clonal expansions in thalassemic patients and myelodysplastic syndrome in patients with sickle cell disease call attention to the non-erythroid functions of these powerful vectors. Here we demonstrate that lentivirally encoded LCR elements, in particular HS1 and HS2, can be activated in early hematopoietic cells including hematopoietic stem cells and myeloid progenitors. This activity is position-dependent and results in the transcriptional activation of a nearby reporter gene in these progenitor cell populations. We further show that flanking a globin vector with an insulator can effectively restrain this non-erythroid activity without impairing therapeutic globin expression. Globin lentiviral vectors harboring powerful LCR HS elements may thus expose to the risk of trans-activating cancer-related genes, which can be mitigated by a suitable insulator.


Assuntos
Anemia Falciforme , Globinas , Anemia Falciforme/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Globinas/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Globinas beta/genética , Globinas beta/metabolismo
19.
Biol Pharm Bull ; 46(7): 1027-1030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394635

RESUMO

Globin digest (GD) inhibits dietary hypertriglyceridemia; however, its effects on physical fatigue remain unknown. Therefore, this study aimed to investigate the potential anti-fatigue effects of GD. Repeated administration of GD and valine (Val)-Val-tyrosine (Tyr)-proline (Pro), a component of GD, for five days prevented the forced walking-induced decrease in locomotion. Furthermore, GD treatment reversed the forced walking-induced increase in blood lactate levels in mice and increased phosphorylated AMP-activated protein kinase (p-AMPK) in the soleus muscle, suggesting that the anti-fatigue effect of GD involves AMPK activation in the soleus muscle through reduced blood lactate.


Assuntos
Globinas , Hiperlipidemias , Camundongos , Animais , Globinas/metabolismo , Globinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Lactatos
20.
Adv Exp Med Biol ; 1414: 45-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520413

RESUMO

Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.


Assuntos
Dioxigenases , Oxirredutases , Humanos , Animais , Globinas , Nitratos , Citocromos b , NAD , Óxidos , Oxirredução , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA