Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 65(8): 2717-2725, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25977281

RESUMO

Two Gram-staining-positive, aerobic, endospore-forming, motile bacteria, strains DT7-4T and DLE-12T, were isolated from roots of evening primrose (Oenothera biennis) and day lily (Hemerocallis fulva), respectively, and subjected to taxonomic characterization. Analysis of 16S rRNA gene sequences indicated that the two strains fell into two distinct phylogenetic clusters belonging to the genus Paenibacillus. Strain DT7-4T was most closely related to Paenibacillus phyllosphaerae PALXIL04T and Paenibacillus taihuensis THMBG22T, with 96.3% 16S rRNA gene sequence similarity to each, and strain DLE-12T was most closely related to Paenibacillus ginsengarvi Gsoil 139T and Paenibacillus hodogayensis SGT, with 96.6 and 93.3% sequence similarity, respectively. Both isolates contained anteiso-C15 : 0 as the dominant fatty acid, meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan and MK-7 as the respiratory menaquinone. The cellular polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unidentified polar lipids. The DNA G+C contents of strains DT7-4T and DLE-12T were 50.1 ± 0.7 and 55.2 ± 0.5 mol%, respectively. The chemotaxonomic properties of both isolates were typical of members of the genus Paenibacillus. However, our biochemical and phylogenetic analyses distinguished each isolate from related species. Based on our polyphasic taxonomic analysis, strains DT7-4T and DLE-12T should be recognized as representatives of novel species of Paenibacillus, for which the names Paenibacillus oenotherae sp. nov. (type strain DT7-4T = KCTC 33186T = JCM 19573T) and Paenibacillus hemerocallicola sp. nov. (type strain DLE-12T = KCTC 33185T = JCM 19572T) are proposed.


Assuntos
Hemerocallis/microbiologia , Oenothera/microbiologia , Paenibacillus/classificação , Filogenia , Raízes de Plantas/microbiologia , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Mycologia ; 103(6): 1277-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21642346

RESUMO

The presence of rusts of daylily and geranium caused respectively by Puccinia hemerocallidis and P. pelargoniizonalis can result in reduced value of these ornamental crops. Experiments were conducted to determine the effects of fluorescent light and sunlight on urediniospore germination, germ tube elongation, lesion development and sporulation of the two fungal pathogens on detached leaves and whole plants. Exposure of dry or hydrated urediniospores of P. hemerocallidis to cool white fluorescent light (600 µmol s(-1) m(-2)) or to sunlight (950-1910 µmol s(-1) m(-2)) for 2 h or 4 h significantly reduced germination and germ tube elongation on detached daylily leaves. Germination but not germ tube elongation of hydrated urediniospores of P. pelargoniizonalis on detached geranium leaves was significantly reduced when exposed to fluorescent light for 2 h or 4 h. A 4 h exposure to either light source significantly reduced lesion development of P. hemerocallidis on detached daylily leaves with fewer lesions developing from hydrated compared to dry urediniospores. Sunlight exposures of 1 h and 2 h of hydrated and dry urediniospores respectively significantly reduced lesion development by either fungus on whole plants. Increasing exposure to fluorescent light negatively affected sporulation of P. hemerocallidis and P. pelargoniizonalis. Complete suppression of sporulation was not observed for either fungus with up to a 24 h exposure to fluorescent light. Light exposure negatively affected disease development by P. hemerocallidis and P. pelargoniizonalis. Exposure to high light intensities may affect spread of rust diseases on ornamental plants.


Assuntos
Basidiomycota/fisiologia , Geranium/microbiologia , Hemerocallis/microbiologia , Doenças das Plantas/microbiologia , Luz , Esporos Fúngicos/fisiologia
3.
Mycologia ; 102(5): 1134-40, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20943512

RESUMO

The effects of light on urediniospore germination and germ tube elongation was studied with eight species of rust fungi that infect ornamental plants or row crops. Exposure of six species of fungi to cool white fluorescent light at 400 or 600 micromol s(-1) m(-2) for 24 h significantly reduced germination with largest decreases typically observed at 600 micromol s(-1) m(-2). Germination and germ tube elongation did not recover during 24 h dark incubation after 18 h exposure to fluorescent light at 600 micromol s(-1) m(-2), indicating the effects were not reversible. Germ tube elongation of all fungi was negatively affected by increased length of exposure to fluorescent light. Increased exposure to fluorescent light differentially affected germination of the fungi with Puccinia hemerocallidis, Phakopsora pachyrhizi, Pucciniastrum vaccinii and Puccinia menthae negatively affected and Puccinia sorghi, Puccinia triticina, Puccinia pelargonii-zonalis and Puccinia iridis relatively unaffected in 10 h incubation. Exposure of Ph. pachyrhizi and P. triticina urediniospores to sunlight rapidly reduced germination and germ tube elongation with no germination observed for Ph. pachyrhizi after 2.5 h. Germ tube elongation but not germination of hydrated urediniospores of Ph. pachyrhizi and P. triticina was significantly reduced compared to dry urediniospores exposed to 10 h fluorescent light followed by 24 h dark incubation. Exposure to fluorescent light (all fungi) or sunlight (two fungi) negatively affected urediniospore germ tube elongation. Differences observed in urediniospore germination between fungi suggest some species have co-evolved with their host for differing light conditions. Our data suggests exposure of urediniospores to strong light could inactivate rust fungi on plant surfaces or in the atmosphere.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/classificação , Basidiomycota/fisiologia , Basidiomycota/efeitos da radiação , Germinação/fisiologia , Germinação/efeitos da radiação , Hemerocallis/microbiologia , Luz , Doenças das Plantas/microbiologia
4.
Huan Jing Ke Xue ; 37(5): 1978-85, 2016 May 15.
Artigo em Zh | MEDLINE | ID: mdl-27506056

RESUMO

The effects of a special ornamental plant Hemerocallis middendorfii Trautv. et Mey. on remediating petroleum-contaminated soil from the Dagang Oilfield in Tianjin, China, was studied by a greenhouse pot-culture experiment and the gradients of TPHs were 0, 10,000 and 40,000 mg · kg⁻¹. The results suggested that H. middendorfii had a high tolerance to TPHs (≤ 40,000 mg · kg⁻¹). And H. middendorfii significantly (P < 0.05) promoted the removal rate of TPHs (53.7% and 33.4%) compared with corresponding controls (31.8% and 12.0%) by natural degradation, respectively. The relative abundance of amino acids, organic acids and sugars and others in soil were analyzed by gas chromatography-mass spectrometry (GC-MS), and PCA and PLS-DA models were to investigate the rhizospheric mechanisms. The results suggested that H. middendorfii changed the distribution characteristics of each component in soil, and the glucopyranoside played a key role in the removal of TPHs. Furthermore, the results about comparative metabolic profile showed that some special metabolites were only found in the contaminated groups, including alanine, tetradecanoic acid, hexadecanoic acid and 9,12-octadecadienoic acid. Additionally, the exposure of TPHs changed the primary metabolic flux of roots, and caused the significant (P < 0.01) change of metabolites. In conclusion, H. middendorfii might be an enduring ornamental plant for effective remediating TPHs (≤ 40,000 mg · kg⁻¹) in soil. But the exposure of TPHs had changed the metabolic profile of H. middendorfii in roots, which might be the metabolic response of H. middendorfii to petroleum-contaminated soil.


Assuntos
Hemerocallis/microbiologia , Poluição por Petróleo , Microbiologia do Solo , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental , China , Cromatografia Gasosa-Espectrometria de Massas , Petróleo , Raízes de Plantas/microbiologia , Rizosfera , Solo
5.
PLoS One ; 9(6): e89272, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887415

RESUMO

Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as 'spring sickness' were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of 'spring sickness' symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants.


Assuntos
Botrytis/fisiologia , Hemerocallis/crescimento & desenvolvimento , Hemerocallis/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Sequência de Bases , Botrytis/citologia , Botrytis/genética , Botrytis/patogenicidade , DNA Intergênico/genética , Genes Fúngicos Tipo Acasalamento , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/ultraestrutura , Esterilização
6.
Protoplasma ; 219(3-4): 221-6, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12099222

RESUMO

Transmission electron microscopy was used to examine details of the host-pathogen interface in daylily leaf cells infected by the rust fungus Puccinia hemerocallidis. Samples were prepared for study by high-pressure freezing followed by freeze substitution. The outstanding preservation of ultrastructural details afforded by this fixation protocol greatly facilitated the study of this host-pathogen interface. The extrahaustorial membrane that separated each dikaryotic haustorium from the cytoplasm of its host cell was especially well preserved and appeared almost completely smooth in profile. Large aggregations of tubular cytoplasmic elements were present near haustoria in infected host cells. Many of these tubular elements were found to be continuous with the extrahaustorial membrane and conspicuous electron-dense deposits present in the extrahaustorial matrix extended into these elements. The use of gold-conjugated wheat germ agglutinin for labeling of chitin revealed that these deposits were not part of the haustorial wall. Portions of many of the tubular elements associated with haustoria were conspicuously beaded in appearance. Some tubular elements were found to be continuous with flattened cisternae that in turn bore short beaded chains. Distinctive tubular-vesicular complexes previously reported only in cryofixed rust haustoria also were found in the haustoria of P. hemerocallidis.


Assuntos
Basidiomycota/ultraestrutura , Hemerocallis/microbiologia , Doenças das Plantas/microbiologia , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/patogenicidade , Criopreservação/métodos , Hemerocallis/ultraestrutura , Interações Hospedeiro-Parasita , Microtúbulos/ultraestrutura , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Plastídeos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA