Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.677
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7987): 594-600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748513

RESUMO

Molnupiravir, an antiviral medication widely used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus and many will be lethal; thus, molnupiravir-induced elevated mutation rates reduce viral load1,2. However, if some patients treated with molnupiravir do not fully clear the SARS-CoV-2 infections, there could be the potential for onward transmission of molnupiravir-mutated viruses. Here we show that SARS-CoV-2 sequencing databases contain extensive evidence of molnupiravir mutagenesis. Using a systematic approach, we find that a specific class of long phylogenetic branches, distinguished by a high proportion of G-to-A and C-to-T mutations, are found almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age groups with widespread use of the drug. We identify a mutational spectrum, with preferred nucleotide contexts, from viruses in patients known to have been treated with molnupiravir and show that its signature matches that seen in these long branches, in some cases with onward transmission of molnupiravir-derived lineages. Finally, we analyse treatment records to confirm a direct association between these high G-to-A branches and the use of molnupiravir.


Assuntos
Antivirais , COVID-19 , Citidina , Hidroxilaminas , Mutagênese , Mutação , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Mutação/efeitos dos fármacos , Filogenia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Carga Viral , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Evolução Molecular , Mutagênese/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
2.
J Med Virol ; 96(5): e29642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708812

RESUMO

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/farmacologia , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Citidina/uso terapêutico , Citidina/farmacologia , Idoso , Adulto , Sequenciamento Completo do Genoma , Variação Genética , Uridina/farmacologia , COVID-19/virologia , Mutação
3.
J Med Virol ; 96(9): e29901, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39210614

RESUMO

The mortality and hospitalization rate by COVID-19 dropped significantly currently, but its seasonal outbreaks make antiviral treatment still vital. The mortality and hospitazation rate by COVID-19 dropped significantly currently, but its seasonal ourbreaks make antiviral treatment still vital. In our study, syrian golden hamsters were treated with molnupiravir and interferons (IFNs) after SARS-CoV-2 infection. Their weight changes, pathological changes, virus replication and inflammation levels were evaluated. In the IFNs single treatment, only IFN-α group reduced viral load (p < 0.05) and virus titer in hamster lungs. The TNF-α expression decreased significantly in both IFNs treatment at 2dpi. Histological and immunofluorescence results showed lung damage in the IFNs groups were milder at 4dpi. In the molnupiravir/IFN-α combination treatment, weight loss and virus replication in lung were significantly decreased in the mono-molnupiravir group and combination group (p < 0.05), the expression of IL-6, TNF-α, IL-1ß and MIP-1α also decreased significantly (p < 0.05), but the combination treatment was not more effective than the mono-molnupiravir treatment. Histological and immunofluorescence results showed the lung damage and inflammation in mono-molnupiravir and combination groups were milder. In summary, IFNs treatment had anti-inflammatory effect against SARS-CoV-2, only IFN-α showed a weak antiviral effect. Molnupiravir/IFN-α combination treatment was effective against SARS-CoV-2 but was not superior to mono-molnupiravir treatment. IFN-α could be considered for immunocompromised patients to stimulate and activate early immune responses.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Hidroxilaminas , Pulmão , Mesocricetus , SARS-CoV-2 , Carga Viral , Replicação Viral , Animais , Antivirais/uso terapêutico , Antivirais/farmacologia , Pulmão/virologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Hidroxilaminas/uso terapêutico , Hidroxilaminas/farmacologia , Cricetinae , Modelos Animais de Doenças , COVID-19/imunologia , COVID-19/virologia , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/farmacologia , Quimioterapia Combinada , Interferon-alfa/uso terapêutico , Interferon-alfa/farmacologia , Citocinas/metabolismo , Interferons/uso terapêutico , Masculino , Leucina/análogos & derivados , Leucina/uso terapêutico , Leucina/farmacologia
4.
Bioorg Med Chem Lett ; 106: 129731, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621594

RESUMO

The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.


Assuntos
Hidroxilamina , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Cinurenina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Relação Estrutura-Atividade , Humanos , Hidroxilamina/química , Hidroxilamina/farmacologia , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Estrutura Molecular , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Relação Dose-Resposta a Droga
5.
Bioorg Chem ; 147: 107379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643567

RESUMO

Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. It belongs to the 'Coronaviridae family', responsible for various diseases, including the common cold, SARS, and MERS. The COVID-19 pandemic, which began in March 2020, has affected 209 countries, infected over a million people, and claimed over 50,000 lives. Significant efforts have been made by repurposing several approved drugs including antiviral, to combat the COVID-19 pandemic. Molnupiravir is found to be the first orally acting efficacious drug to treat COVID-19 cases. It was approved for medical use in the UK in November 2021 and other countries, including USFDA, which granted approval an emergency use authorization (EUA) for treating adults with mild to moderate COVID-19 patients. Considering the importance of molnupiravir, the present review deals with its various synthetic strategies, pharmacokinetics, bio-efficacy, toxicity, and safety profiles. The comprehensive information along with critical analysis will be very handy for a wide range of audience including medicinal chemists in the arena of antiviral drug discovery especially anti-viral drugs against any variant of COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Citidina , Hidroxilaminas , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Antivirais/síntese química , Hidroxilaminas/uso terapêutico , Hidroxilaminas/química , Hidroxilaminas/farmacologia , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/uso terapêutico , Citidina/farmacologia , Citidina/química , Citidina/síntese química , Uridina/farmacologia , Uridina/análogos & derivados , Uridina/síntese química , Uridina/química , Uridina/uso terapêutico , Pandemias , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico
6.
J Infect Dis ; 227(9): 1068-1072, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36461940

RESUMO

Molnupiravir is an antiviral agent recently used for treating coronavirus disease 2019 (COVID-19). Here, we demonstrate that N4-hydroxycytidine (NHC), a molnupiravir metabolite, treated with cytidine deaminase (CDA) induced Cu(II)-mediated oxidative DNA damage in isolated DNA. A colorimetric assay revealed hydroxylamine generation from CDA-treated NHC. The site specificity of DNA damage also suggested involvement of hydroxylamine in the damage. Furthermore, Cu(I) and H2O2 play an important role in the DNA damage. We propose oxidative DNA damage via CDA-mediated metabolism as a possible mutagenic mechanism of NHC, highlighting the need for careful risk assessment of molnupiravir use in therapies for viral diseases, including COVID-19.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Peróxido de Hidrogênio , Hidroxilaminas/farmacologia , Estresse Oxidativo , Dano ao DNA
7.
Nature ; 601(7894): 496, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35064230

Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Desenvolvimento de Medicamentos/tendências , Farmacorresistência Viral , Pesquisadores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Administração Oral , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/provisão & distribuição , COVID-19/mortalidade , COVID-19/prevenção & controle , Vacinas contra COVID-19/provisão & distribuição , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Aprovação de Drogas , Combinação de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Quimioterapia Combinada , Hospitalização/estatística & dados numéricos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Lactamas/administração & dosagem , Lactamas/farmacologia , Lactamas/uso terapêutico , Leucina/administração & dosagem , Leucina/farmacologia , Leucina/uso terapêutico , Adesão à Medicação , Terapia de Alvo Molecular , Mutagênese , Nitrilas/administração & dosagem , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Prolina/administração & dosagem , Prolina/farmacologia , Prolina/uso terapêutico , Parcerias Público-Privadas/economia , Ritonavir/administração & dosagem , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/enzimologia , SARS-CoV-2/genética
8.
J Biol Chem ; 297(1): 100867, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118236

RESUMO

Molnupiravir, a prodrug of the nucleoside derivative ß-D-N4-hydroxycytidine (NHC), is currently in clinical trials for COVID-19 therapy. However, the biochemical mechanisms involved in molnupiravir-induced mutagenesis had not been explored. In a recent study, Gordon et al. demonstrated that NHC can be incorporated into viral RNA and subsequently extended and used as template for RNA-dependent RNA synthesis, proposing a mutagenesis model consistent with available virological evidence. Their study uncovers molecular mechanisms by which molnupiravir drives SARS-CoV-2 into error catastrophe.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Citidina/análogos & derivados , Hidroxilaminas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Citidina/farmacologia , Humanos , Mutação Puntual/efeitos dos fármacos , RNA Viral/genética , SARS-CoV-2/metabolismo
9.
J Biol Chem ; 297(1): 100770, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33989635

RESUMO

The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 is an important target in current drug development efforts for the treatment of coronavirus disease 2019. Molnupiravir is a broad-spectrum antiviral that is an orally bioavailable prodrug of the nucleoside analogue ß-D-N4-hydroxycytidine (NHC). Molnupiravir or NHC can increase G to A and C to U transition mutations in replicating coronaviruses. These increases in mutation frequencies can be linked to increases in antiviral effects; however, biochemical data of molnupiravir-induced mutagenesis have not been reported. Here we studied the effects of the active compound NHC 5'-triphosphate (NHC-TP) against the purified severe acute respiratory syndrome coronavirus 2 RNA-dependent RNA polymerase complex. The efficiency of incorporation of natural nucleotides over the efficiency of incorporation of NHC-TP into model RNA substrates followed the order GTP (12,841) > ATP (424) > UTP (171) > CTP (30), indicating that NHC-TP competes predominantly with CTP for incorporation. No significant inhibition of RNA synthesis was noted as a result of the incorporated monophosphate in the RNA primer strand. When embedded in the template strand, NHC-monophosphate supported the formation of both NHC:G and NHC:A base pairs with similar efficiencies. The extension of the NHC:G product was modestly inhibited, but higher nucleotide concentrations could overcome this blockage. In contrast, the NHC:A base pair led to the observed G to A (G:NHC:A) or C to U (C:G:NHC:A:U) mutations. Together, these biochemical data support a mechanism of action of molnupiravir that is primarily based on RNA mutagenesis mediated via the template strand.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Citidina/análogos & derivados , Hidroxilaminas/farmacologia , RNA Viral/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Citidina/farmacologia , Humanos , Mutagênese , Mutação Puntual/efeitos dos fármacos , SARS-CoV-2/metabolismo
10.
J Infect Dis ; 224(5): 749-753, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244768

RESUMO

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. Currently available monoclonal antibodies and vaccines appear to have reduced efficacy against some of these VoCs. Antivirals targeting conserved proteins of SARS-CoV-2 are unlikely to be affected by mutations arising in VoCs and should therefore be effective against emerging variants. We here investigate the efficacy of molnupiravir, currently in phase 2 clinical trials, in hamsters infected with Wuhan strain or B.1.1.7 and B.1.351 variants. Molnupiravir proved to be effective against infections with each of the variants and therefore may have potential combating current and future emerging VoCs.


Assuntos
Tratamento Farmacológico da COVID-19 , Citidina , Hidroxilaminas , SARS-CoV-2 , Replicação Viral , Animais , Cricetinae , Feminino , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Citidina/análogos & derivados , Citidina/farmacologia , Modelos Animais de Doenças , Hidroxilaminas/farmacologia , Mutação/efeitos dos fármacos , Pandemias/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Replicação Viral/efeitos dos fármacos
11.
Osteoarthritis Cartilage ; 29(3): 372-379, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347923

RESUMO

OBJECTIVES: To investigate the role of zinc finger protein 440 (ZNF440) in the pathophysiology of cartilage degeneration during facet joint (FJ) and knee osteoarthritis (OA). METHODS: Expression of ZNF440 in FJ and knee cartilage was determined by immunohistochemistry, quantitative (q)PCR, and Western blotting (WB). Human chondrocytes isolated from FJ and knee OA cartilage were cultured and transduced with ZNF440 or control plasmid, or transfected with ZNF440 or control small interfering RNA (siRNA), with/without interleukin (IL)-1ß. Gene and protein levels of catabolic, anabolic and apoptosis markers were determined by qPCR or WB, respectively. In silico analyses were performed to determine compounds with potential to inhibit expression of ZNF440. RESULTS: ZNF440 expression was increased in both FJ and knee OA cartilage compared to control cartilage. In vitro, overexpression of ZNF440 significantly increased expression of MMP13 and PARP p85, and decreased expression of COL2A1. Knockdown of ZNF440 with siRNA partially reversed the catabolic and cell death phenotype of human knee and FJ OA chondrocytes stimulated with IL-1ß. In silico analysis followed by validation assays identified scriptaid as a compound with potential to downregulate the expression of ZNF440. Validation experiments showed that scriptaid reduced the expression of ZNF440 in OA chondrocytes and concomitantly reduced the expression of MMP13 and PARP p85 in human knee OA chondrocytes overexpressing ZNF440. CONCLUSIONS: The expression of ZNF440 is significantly increased in human FJ and knee OA cartilage and may regulate cartilage degenerative mechanisms. Furthermore, scriptaid reduces the expression of ZNF440 and inhibits its destructive effects in OA chondrocytes.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteínas de Ligação a DNA/fisiologia , Articulação do Joelho , Osteoartrite do Joelho/genética , Osteoartrite da Coluna Vertebral/genética , Dedos de Zinco/genética , Articulação Zigapofisária , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Apoptose/genética , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/genética , Simulação por Computador , Proteínas de Ligação a DNA/genética , Feminino , Técnicas de Silenciamento de Genes , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hidroxilaminas/farmacologia , Imuno-Histoquímica , Técnicas In Vitro , Inflamação/genética , Masculino , Metaloproteinase 13 da Matriz/genética , Metabolismo/efeitos dos fármacos , Metabolismo/genética , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite da Coluna Vertebral/metabolismo , Quinolinas/farmacologia , Adulto Jovem , Dedos de Zinco/efeitos dos fármacos
12.
J Cell Mol Med ; 24(1): 984-995, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742861

RESUMO

IL-2R pathway is a key regulator in the development of immune cells and has emerged as a promising drug target in cancer treatment, but there is a scarcity of related inhibitors. TPD7 is a novel biphenyl urea taspine derivate, which has been shown anti-cancer effect. Here, we demonstrated the anti-cancer activity of TPD7 in cutaneous T cell lymphoma and investigated the underlying mechanism of TPD7 through IL-2R signalling. The inhibitory effect of TPD7 on cell viability exhibited a strong correlation with the expression level of IL-2R, and cutaneous T cell lymphoma H9 and HUT78 cells were most sensitive to TPD7. TPD7 was nicely bound to IL-2R and down-regulated the mRNA and protein levels of IL-2R. Furthermore, TPD7 suppressed the downstream cascades of IL-2R including JAK/STAT, PI3K/AKT/mTOR and PLCγ/Raf/MAPK signalling, resulting in Bcl-2 mitochondrial apoptosis pathway and cell cycle proteins CDK/Cyclins regulation. And, these were verified by flow cytometry analysis that TPD7 facilitated cell apoptosis in H9 cells via mitochondrial pathway and impeded cell cycle progression at G2/M phase. TPD7 is a novel anti-cancer agent and may be a potential candidate for cutaneous T cell lymphoma treatment by regulating IL-2R signalling pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Carbanilidas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hidroxilaminas/farmacologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfoma Cutâneo de Células T/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
13.
J Biol Chem ; 294(25): 9722-9733, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068415

RESUMO

Bone is a highly metabolic organ that undergoes continuous remodeling to maintain its structural integrity. During development, bones, in particular osteoblasts, rely on glucose uptake. However, the role of glucose metabolism in osteocytes is unknown. Osteocytes are terminally differentiated osteoblasts orchestrating bone modeling and remodeling. In these cells, parathyroid hormone (PTH) suppresses Sost/sclerostin expression (a potent inhibitor of bone formation) by promoting nuclear translocation of class IIa histone deacetylase (HDAC) 4 and 5 and the repression of myocyte enhancer factor 2 (MEF2) type C. Recently, Scriptaid, an HDAC complex co-repressor inhibitor, has been shown to induce MEF2 activation and exercise-like adaptation in mice. In muscles, Scriptaid disrupts the HDAC4/5 co-repressor complex, increases MEF2C function, and promotes cell respiration. We hypothesized that Scriptaid, by affecting HDAC4/5 localization and MEF2C activation, might affect osteocyte functions. Treatment of the osteocytic Ocy454-12H cells with Scriptaid increased metabolic gene expression, cell respiration, and glucose uptake. Similar effects were also seen upon treatment with PTH, suggesting that both Scriptaid and PTH can promote osteocyte metabolism. Similar to PTH, Scriptaid potently suppressed Sost expression. Silencing of HDAC5 in Ocy454-12H cells abolished Sost suppression but not glucose transporter type 4 (Glut4) up-regulation induced by Scriptaid. These results demonstrate that Scriptaid increases osteocyte respiration and glucose uptake by mechanisms independent of HDAC complex inhibition. In osteocytes, Scriptaid, similar to PTH, increases binding of HDAC5 to Mef2c with suppression of Sost but only partially increases receptor activator of NF-κB ligand (Rankl) expression, suggesting a potential bone anabolic effect.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Hidroxilaminas/farmacologia , Osteócitos/metabolismo , Hormônio Paratireóideo/farmacologia , Quinolinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Células Cultivadas , Feminino , Transportador de Glucose Tipo 4/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/citologia , Osteócitos/efeitos dos fármacos
14.
Anim Biotechnol ; 31(2): 155-163, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734624

RESUMO

Somatic cell nuclear transfer (SCNT) technology has been applied in the construction of disease model, production of transgenic animals, therapeutic cloning, and other fields. However, the cloning efficiency remains limited. In our study, to improve SCNT efficiency, brilliant cresyl blue (BCB) staining were chosen to select recipient oocytes. In addition, DNA methyltransferase inhibitor Zebularine (5 nmol/L) and histone deacetylase inhibitor Scriptaid (0.2 µmol/L) were jointly used to treat sheep donor cumulus cells and reconstructed embryo. Moreover, the expression levels of embryonic development-related genes (OCT4, SOX2, H19, IGF2 and Dnmt1) of reconstructed embryo were also detected. Using BCB + oocytes as recipient cell, donor cumulus cells and reconstructed embryos were treated with 5 nmol/L Zebularine and 0.2 µmol/L Scriptaid, the blastocyst rate in Zeb + SCR-SCNT group (28.25%) was significantly higher than SCNT (21.16%) (p < 0.05). Furthermore, results showed that expression levels of OCT4, SOX2, H19, IGF2 and Dnmt1 genes in Zeb + SCR-SCNT embryos were more similar to IVF embryos. Our study proved that 5 nmol/L Zebularine and 0.2 µmol/L Scriptaid treating with sheep donor cumulus cells and reconstructed embryos improved SCNT blastocyst rate and relieve the abnormal expression of embryonic developmental related genes.


Assuntos
Citidina/análogos & derivados , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Hidroxilaminas/farmacologia , Técnicas de Transferência Nuclear/veterinária , Quinolinas/farmacologia , Ovinos/embriologia , Animais , Clonagem de Organismos/métodos , Clonagem de Organismos/veterinária , Citidina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia
15.
Zygote ; 28(4): 286-290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32285760

RESUMO

The aim of this study was to evaluate the effects of alternative protocols to improve oocyte selection, embryo activation and genomic reprogramming on in vitro development of porcine embryos cloned by somatic cell nuclear transfer (SCNT). In Experiment 1, in vitro-matured oocytes were selected by exposure to a hyperosmotic sucrose solution prior to micromanipulation. In Experiment 2, an alternative chemical activation protocol using a zinc chelator as an adjuvant (ionomycin + N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) + N-6-dimethylaminopurine (6-DMAP)) was compared with a standard protocol (ionomycin + 6-DMAP) for the activation of porcine oocytes or SCNT embryos. In Experiment 3, presumptive cloned zygotes were incubated after chemical activation in a histone deacetylase inhibitor (Scriptaid) for 15 h, with the evaluation of embryo yield and total cell number in day 7 blastocysts. In Experiment 1, cleavage rates tended to be higher in sucrose-treated oocytes than controls (123/199, 61.8% vs. 119/222, 53.6%, respectively); however, blastocyst rates were similar between groups. In Experiment 2, cleavage rates were higher in zygotes treated with TPEN than controls but no difference in blastocyst rates between groups occurred. For Experiment 3, the exposure to Scriptaid did not improve embryo development after cloning. Nevertheless, the total number of cells was higher in cloned zygotes treated with Scriptaid than SCNT controls. In conclusion, oocyte selection by sucrose as well as treatments with zinc chelator and an inhibitor of histone deacetylases did not significantly improve blastocyst yield in cloned and parthenotes. However, the histone deacetylases inhibitor produced a significant improvement in the blastocyst quality.


Assuntos
Quelantes/farmacologia , Clonagem de Organismos , Inibidores de Histona Desacetilases/farmacologia , Oócitos/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Etilenodiaminas/farmacologia , Feminino , Hidroxilaminas/farmacologia , Técnicas de Maturação in Vitro de Oócitos , Ionomicina/farmacologia , Técnicas de Transferência Nuclear , Oócitos/fisiologia , Quinolinas/farmacologia , Sacarose/farmacologia , Suínos , Zinco
16.
Mol Pharmacol ; 96(1): 99-108, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036695

RESUMO

C-terminal binding proteins (CtBP1/2) are oncogenic transcriptional coregulators and dehydrogenases often overexpressed in multiple solid tumors, including breast, colon, and ovarian cancer, and associated with poor survival. CtBPs act by repressing expression of genes responsible for apoptosis (e.g., PUMA, BIK) and metastasis-associated epithelial-mesenchymal transition (e.g., CDH1), and by activating expression of genes that promote migratory and invasive properties of cancer cells (e.g., TIAM1) and genes responsible for enhanced drug resistance (e.g., MDR1). CtBP's transcriptional functions are also critically dependent on oligomerization and nucleation of transcriptional complexes. Recently, we have developed a family of CtBP dehydrogenase inhibitors, based on the parent 2-hydroxyimino-3-phenylpropanoic acid (HIPP), that specifically disrupt cancer cell viability, abrogate CtBP's transcriptional function, and block polyp formation in a mouse model of intestinal polyposis that depends on CtBP's oncogenic functions. Crystallographic analysis revealed that HIPP interacts with CtBP1/2 at a conserved active site tryptophan (W318/324; CtBP1/2) that is unique among eukaryotic D2-dehydrogenases. To better understand the mechanism of action of HIPP-class inhibitors, we investigated the contribution of W324 to CtBP2's biochemical and physiologic activities utilizing mutational analysis. Indeed, W324 was necessary for CtBP2 self-association, as shown by analytical ultracentrifugation and in vivo cross-linking. Additionally, W324 supported CtBP's association with the transcriptional corepressor CoREST, and was critical for CtBP2 induction of cell motility. Notably, the HIPP derivative 4-chloro-HIPP biochemically and biologically phenocopied mutational inactivation of CtBP2 W324. Our data support further optimization of W318/W324-interacting CtBP dehydrogenase inhibitors that are emerging as a novel class of cancer cell-specific therapeutic.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/farmacologia , Polipose Intestinal/tratamento farmacológico , Triptofano/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Animais , Antineoplásicos/química , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Polipose Intestinal/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Reproduction ; 157(2): 123-133, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444719

RESUMO

Insufficient epigenetic reprogramming is incompatible with normal development of embryos produced by somatic cell nuclear transfer (SCNT), but treatment with histone deacetylases inhibitors (HDACi) enhances development of SCNT embryos. However, the mechanisms underpinning HDACi benefits in SCNT embryos remain largely uncharacterized. We hypothesized that, in addition to enhancing reprogramming, HDACi treatment may promote expression of genes not required for early development of SCNT embryos. To test this hypothesis, RNA synthesis was inhibited by treating bovine SCNT embryos with 5,6-dichlorobenzimidazole 1-ß-D-ribofuranoside (DBR), which were concomitantly treated or not with Scriptaid (Scrip; an HDACi). Development to the blastocyst stage was significantly increased by treatment with Scrip alone (26.6%) or associated with DRB (28.6%) compared to Control (17.9%). The total number of nuclei was significantly improved only in embryos that were treated with both Scrip + DRB. Nuclear decondensation after SCNT was significantly increased by DRB treatment either alone or associated with Scrip. The relative mRNA expression, evaluated during the embryo genome activation (EGA) transition, revealed that some KDMs (KDM1A, KDM3A, KDM4C and KDM6A) and DNMT1 where prematurely expressed in Scrip-treated embryos. However, treatment with Scrip + DRB inhibited early mRNA expression of those genes, as well as several other KDMs (KDM4A, KDM4B, KDM5A, KDM5B, KDM5C and KDM7A) compared to embryos treated with Scrip alone. These findings revealed that HDACi improved development in SCNT embryos compared to Control, but altered the expression of genes involved in epigenetic regulation and did not improve embryo quality. Inhibition of RNA synthesis during HDACi treatment enhanced nuclear chromatin decondensation, modulated gene expression and improved SCNT embryo quality.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hidroxilaminas/farmacologia , Quinolinas/farmacologia , RNA/biossíntese , Transcrição Gênica/efeitos dos fármacos , Animais , Bovinos/embriologia , Bovinos/genética , Células Cultivadas , Reprogramação Celular/genética , Clonagem de Organismos/veterinária , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Masculino , Técnicas de Transferência Nuclear
18.
Exp Eye Res ; 188: 107792, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499034

RESUMO

Oxidative stress and subsequent chronic inflammation result in dysfunction of the retinal pigment epithelium (RPE) and represent therapeutic targets in the context of age-related macular degeneration (AMD). However, molecular mechanisms that linked oxidative stress and inflammation still unclear. As an important byproduct of oxidative stress, 4-hydroxynonenal (4-HNE) induces apoptosis and lysosome dysregulation of RPE cells. In the present study, we evaluated cytokines production of RPE cells induced by 4-HNE by using cytokine array and confirmed that 4-HNE induced IL-6, IL-1ß and TNF-α production in a concentration dependent manner. Specifically, 4-HNE also induced IL-10 and TGF-ß production in low concentration. Molecular analysis revealed that intracellular HSP70 inhibited 4-HNE-induced production of pro-inflammatory cytokines, and 4-HNE exerted proinflammatory effects in RPE cells by enhancing extracellular release of HSP70, as efflux inhibitor Methyl-ß-cyclodextrin (MBC) treatment significantly blocked the release of HSP70 and decreased IL-6 production of RPE cells induced by 4-HNE. Meanwhile, HSP70 inducer arimoclomol increased intracellular HSP70 production, but showed no influence on its extracellular level, also performed anti-inflammatory effects in 4-HNE-stimulated RPE cells. Whereas the anti-inflammatory effects of paeoniflorin, an HSP70 inducer simultaneously promoted its extracellular efflux, was lower than arimoclomol. In addition, we further confirmed that MBC exhibited synergetic effect with both paeoniflorin and arimoclomol to inhibit the production of proinflammatory cytokines induced by 4-HNE. Taken together, these results indicate that HSP70 plays a vital role in regulating inflammation of RPE cells induced by oxidative stress and might be a potential novel target for clinical treatment of AMD.


Assuntos
Aldeídos/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Citocinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Aldeídos/antagonistas & inibidores , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidroxilaminas/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Transfecção , beta-Ciclodextrinas/farmacologia
19.
Nitric Oxide ; 84: 22-29, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630055

RESUMO

Garlic has been demonstrated to exert protective effects against oxidative damage using numerous experimental models. The antioxidant effects of garlic are associated with the activation of Nrf2-dependent gene expression. S-1-Propenylcysteine (S1PC) and S-allylcysteine (SAC) are two predominant sulfur amino acids present in aged garlic extract; however, the exact roles of these amino acids within the Keap1/Nrf2 system remain unknown. We hypothesized that sulfur-containing amino acids derived from garlic could activate Nrf2 in the presence of nitric oxide (NO). Neither S1PC nor SAC affected gene expression of either heme oxygenase-1 (HMOX1) or the glutamate-cysteine ligase modifier subunit (GCLM) in human umbilical vein endothelial cells (HUVECs) or human aorta endothelial cells (HAECs). Interestingly, S1PC augmented expression levels induced by nitric oxide donors (NO-donors) such as NOR3 and GSNO. NO-donors were found to induce nuclear accumulation of NRF2 and activation of the eIF2α/ATF4 pathway, whereas S1PC did not further amplify the NO-induced effects on NRF2 or eIF2α/ATF4. Additionally, NO-donors induced the degradation of BTB domain and CNC homolog 1 (BACH1), a transcriptional repressor that can compete with NRF2. In addition, S1PC enhanced BACH1 downregulation within the nucleus. Pretreatment with deferoxamine, an inhibitor of heme synthesis, upregulated BACH1 protein levels and abolished the effect of NO-donors and S1PC on HMOX1 expression. The above results indicate that S1PC could modulate antioxidant gene expression via the NO/heme/BACH1 signaling pathway, thereby suggesting that S1PC-induced degradation of BACH1 may provide a basis for therapeutic applications.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacologia , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação para Baixo , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hidroxilaminas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Nitrocompostos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
20.
Bioorg Med Chem ; 27(7): 1430-1436, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30792103

RESUMO

Class C ß-lactamases have previously been shown to be efficiently inactivated by O-aryloxycarbonyl hydroxamates. O-Phenoxycarbonyl-N-benzyloxycarbonylhydroxylamine (1) and O-phenoxycarbonyl-N-(R)-[(4-amino-4-carboxy-1-butyl)oxycarbonyl]hydroxylamine (2), for example, were found to be effective inactivators. The present paper describes a structure-activity study of these molecules to better define the important structural elements for high inhibitory activity. The results show that a well-positioned hydrophobic element (which may interact with the Tyr221 residue of the enzyme) and a negatively charged element, e.g. a carboxylate group (which may interact with Arg204), are required for high reactivity with the enzyme. The new compounds were found to inactivate by forming a carbonyl cross-linked enzyme (probably Ser64OCONHLys 315) as for 1 rather than the inert hydroxamoyl derivative observed with 2.


Assuntos
Ácidos Hidroxâmicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Relação Dose-Resposta a Droga , Enterobacter cloacae/enzimologia , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Hidroxilaminas/síntese química , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Cinética , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA