Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 69(1): 26-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390518

RESUMO

As a new absolute quantitation method for low-molecular compounds, quantitative NMR (qNMR) has emerged. In the Japanese Pharmacopoeia (JP), 15 compounds evaluated by qNMR are listed as reagents used as the HPLC reference standards in the assay of crude drug section of the JP. In a previous study, we revealed that humidity affects purity values of hygroscopic reagents and that (i) humidity control before and during weighing is important for a reproducible preparation and (ii) indication of the absolute amount (not purity value), which is not affected by water content, is important for hygroscopic products determined by qNMR. In this study, typical and optimal conditions that affect the determination of the purity of ginsenoside Rb1 (GRB1), saikosaponin a (SSA), and barbaloin (BB) (i.e., hygroscopic reagents) by qNMR were examined. First, the effect of humidity before and during weighing on the purity of commercial GRB1, with a purity value determined by qNMR, was examined. The results showed the importance afore-mentioned. The results of SSA, which is relatively unstable in the dissolved state, suggested that the standardization of humidity control before and during weighing for a specific time provides a practical approach for hygroscopic products. In regard to BB, its humidity control for a specific time, only before weighing, is enough for a reproducible purity determination.


Assuntos
Antracenos/análise , Ginsenosídeos/análise , Higroscópicos/análise , Ácido Oleanólico/análogos & derivados , Saponinas/análise , Antracenos/normas , Ginsenosídeos/normas , Umidade , Higroscópicos/normas , Japão , Espectroscopia de Ressonância Magnética/normas , Ácido Oleanólico/análise , Ácido Oleanólico/normas , Saponinas/normas
2.
Yakugaku Zasshi ; 140(8): 1063-1069, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32741864

RESUMO

Quantitative NMR (qNMR) has been developed as an absolute quantitation method to determine the purity or content of organic compounds including marker compounds in crude drugs. The "qNMR test" has been introduced into the crude-drug section of the Japanese Pharmacopoeia (JP) for determining the purity of reagents used for the assay in the JP. In Supplement II to the JP 17th edition published in June 2019, fifteen compounds adopted qNMR test were listed as the reagents for the assay. To establish the "qNMR test" in the crude drug section of the JP, there were several problems to be solved. Previously, we reported that the handling impurity signals from reference substances and targeted marker compounds, chemical shifts of reference substances, and peak unity of signals of targeted marker compounds are important factors to conduct qNMR measurements with intended accuracy. In this study, we investigated that the hygroscopicity of reagents could cause the changes in the compounds' purity depending on increasing their water content. Twenty-one standard products used for the crude-drug test in JP were examined by water sorption-desorption analysis, and ginsenosides and saikosaponins were found to be hygroscopic. To prepare a sample solution of saikosaponin b2 for qNMR analysis, samples need to be maintained for 18 h at 25°C and 76% relative humidity; further, samples need to be weighed at the same humidity for the qNMR analysis.


Assuntos
Contaminação de Medicamentos/prevenção & controle , Higroscópicos/química , Higroscópicos/normas , Indicadores e Reagentes/normas , Espectroscopia de Ressonância Magnética/métodos , Farmacopeias como Assunto/normas , Ginsenosídeos/química , Ginsenosídeos/normas , Umidade , Japão , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/normas , Psicoterapia Breve , Saponinas/química , Saponinas/normas , Temperatura , Água/análise
3.
J Chromatogr A ; 1514: 95-102, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28774712

RESUMO

CDC's Division of Laboratory Sciences developed and validated a new method for the simultaneous detection and measurement of 11 sugars, alditols and humectants in tobacco products. The method uses isotope dilution ultra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and has demonstrated high sensitivity, selectivity, throughput and accuracy, with recoveries ranging from 90% to 113%, limits of detection ranging from 0.0002 to 0.0045µg/mL and coefficients of variation (CV%) ranging from 1.4 to 14%. Calibration curves for all analytes were linear with linearity R2 values greater than 0.995. Quantification of tobacco components is necessary to characterize tobacco product components and their potential effects on consumer appeal, smoke chemistry and toxicology, and to potentially help distinguish tobacco product categories. The researchers analyzed a variety of tobacco products (e.g., cigarettes, little cigars, cigarillos) using the new method and documented differences in the abundance of selected analytes among product categories. Specifically, differences were detected in levels of selected sugars found in little cigars and cigarettes, which could help address appeal potential and have utility when product category is unknown, unclear, or miscategorized.


Assuntos
Cromatografia Líquida de Alta Pressão , Higroscópicos/análise , Nicotiana/química , Álcoois Açúcares/análise , Açúcares/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/normas , Higroscópicos/química , Higroscópicos/normas , Técnicas de Diluição do Indicador , Marcação por Isótopo , Limite de Detecção , Análise de Componente Principal , Controle de Qualidade , Álcoois Açúcares/química , Álcoois Açúcares/normas , Açúcares/química , Açúcares/normas , Espectrometria de Massas em Tandem/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA