Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.400
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mol Cell ; 83(6): 942-960.e9, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36893757

RESUMO

Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.


Assuntos
Hiperóxia , Doenças Mitocondriais , Animais , Humanos , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Oxigênio/metabolismo
2.
Nature ; 631(8020): 350-359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926577

RESUMO

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Assuntos
Catecol Oxidase , Proteínas de Drosophila , Drosophila melanogaster , Precursores Enzimáticos , Hemócitos , Oxigênio , Transição de Fase , Respiração , Animais , Feminino , Masculino , Transporte Biológico , Anidrases Carbônicas/metabolismo , Catecol Oxidase/metabolismo , Cobre/metabolismo , Cristalização , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Precursores Enzimáticos/metabolismo , Hemocianinas/metabolismo , Hemócitos/imunologia , Hemócitos/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Hiperóxia/metabolismo , Hipóxia/metabolismo , Larva/anatomia & histologia , Larva/citologia , Larva/imunologia , Larva/metabolismo , Oxigênio/metabolismo
3.
FASEB J ; 38(16): e70012, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39183539

RESUMO

Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.


Assuntos
Exossomos , Hiperóxia , Lesão Pulmonar , Melatonina , Células-Tronco Mesenquimais , MicroRNAs , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Exossomos/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/etiologia , Células-Tronco Mesenquimais/metabolismo , Melatonina/farmacologia , Hiperóxia/metabolismo , Hiperóxia/complicações , Masculino , Apoptose , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Potencial da Membrana Mitocondrial
4.
Exp Cell Res ; 435(2): 113945, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286256

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo
5.
Am J Respir Cell Mol Biol ; 70(2): 94-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874230

RESUMO

Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Ácido Tauroquenodesoxicólico , Recém-Nascido , Animais , Ratos , Humanos , Displasia Broncopulmonar/patologia , Hiperóxia/metabolismo , Ratos Sprague-Dawley , Pulmão/patologia , Senescência Celular , Peroxidase/metabolismo , Oxidantes , Animais Recém-Nascidos , Modelos Animais de Doenças
6.
Am J Respir Cell Mol Biol ; 71(4): 481-494, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38869353

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by impaired lung alveolar and vascular growth. We investigated the hypothesis that neonatal exposure to hyperoxia leads to persistent BPD phenotype caused by decreased expression of liver kinase B1 (LKB1), a key regulator of mitochondrial function. We exposed mouse pups from Postnatal Day (P)1 through P10 to 21% or 75% oxygen. Half of the pups in each group received metformin or saline intraperitoneally from P1 to P10. Pups were killed at P4 or P10 or recovered in 21% O2 until euthanasia at P21. Lung histology and morphometry, immunofluorescence, and immunoblots were performed to detect changes in lung structure and expression of LKB1; downstream targets AMPK, PGC-1α, and electron transport chain (ETC) complexes; and Notch ligands Jagged 1 and delta-like 4. LKB1 signaling and in vitro angiogenesis were assessed in human pulmonary artery endothelial cells (exposed to 21% or 95% O2 for 36 hours. Levels of LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes were decreased in lungs at P10 and P21 in hyperoxia. Metformin increased LKB1, phosphorylated AMPK, PGC-1α, and ETC complexes at P10 and P21 in pups exposed to hyperoxia. Radial alveolar count was decreased, and mean linear intercept increased in pups exposed to hyperoxia at P10 and P21; these were improved by metformin. Lung capillary density was decreased in hyperoxia at P10 and P21 and was increased by metformin. In vitro angiogenesis was decreased in human pulmonary artery endothelial cells by 95% O2 and was improved by metformin. Decreased LKB1 signaling may contribute to decreased alveolar and vascular growth in a mouse model of BPD.


Assuntos
Animais Recém-Nascidos , Displasia Broncopulmonar , Modelos Animais de Doenças , Hiperóxia , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/enzimologia , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/enzimologia , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Metformina/farmacologia , Transdução de Sinais , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fosforilação , Angiogênese
7.
J Cell Mol Med ; 28(20): e70127, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39467998

RESUMO

Diabetic calcific tendinopathy is the leading cause of chronic pain, mobility restriction, and tendon rupture in patients with diabetes. Tendon stem/progenitor cells (TSPCs) have been implicated in the development of diabetic calcified tendinopathy, but the molecular mechanisms remain unclear. This study found that diabetic tendons have a hyperoxic environment, characterized by increased oxygen delivery channels and carriers. In hyperoxic environment, TSPCs showed enhanced osteogenic differentiation and increased levels of reactive oxygen species (ROS). Additionally, hypoxia-inducible factor-1a (HIF-1a), a protein involved in regulating cellular responses to hyperoxia, was decreased in TSPCs by the ubiquitin-proteasome system. By intervening with antioxidant N-acetyl-L-cysteine (NAC) and overexpressing HIF-1a, we discovered that blocking the ROS/HIF-1a signalling axis significantly inhibited the osteogenic differentiation ability of TSPCs. Animal experiments further confirmed that hyperoxic environment could cause calcification in the Achilles tendon tissue of rats, while NAC intervention prevented calcification. These findings demonstrate that hyperoxia in diabetic tendons promotes osteogenic differentiation of TSPCs through the ROS/HIF-1a signalling axis. This study provides a new theoretical basis and research target for preventing and treating diabetic calcified tendinopathy.


Assuntos
Diferenciação Celular , Diabetes Mellitus Experimental , Subunidade alfa do Fator 1 Induzível por Hipóxia , Osteogênese , Espécies Reativas de Oxigênio , Transdução de Sinais , Células-Tronco , Tendões , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Ratos , Tendões/metabolismo , Tendões/patologia , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ratos Sprague-Dawley , Hiperóxia/metabolismo , Acetilcisteína/farmacologia
8.
J Physiol ; 602(10): 2265-2285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632887

RESUMO

The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4  regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio , Claudina-5 , Células Endoteliais , Hiperóxia , Receptores Notch , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Claudina-5/metabolismo , Claudina-5/genética , Células Endoteliais/metabolismo , Hiperóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais
9.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L52-L64, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987780

RESUMO

Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.


Assuntos
Asma , Sulfeto de Hidrogênio , Hiperóxia , Humanos , Gravidez , Criança , Animais , Feminino , Camundongos , Masculino , Hiperóxia/metabolismo , Animais Recém-Nascidos , Sulfeto de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Pulmão/metabolismo , Asma/patologia
10.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L359-L370, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010825

RESUMO

The 18-kDa isoform of basic fibroblast growth factor (bFGF/FGF2) lacks a conventional signal peptide sequence and is exported by a novel membrane-associated transport pathway. Extracellular vesicles (EVs) are increasingly recognized as mediators of intercellular communication in the lung, and our prior work demonstrates that EVs carry cargo that contributes to hyperoxic lung injury and are biomarkers for bronchopulmonary dysplasia. We used primary human bronchial epithelial (HBE), pulmonary artery endothelial (HPAE), and fibroblast (HNF) cells to determine whether FGF2 was secreted in EVs. EVs were isolated by ultracentrifugation from HBE, HPAE, and HNF exposed to either normoxia or hyperoxia, followed by nanoparticle tracking analysis and electron microscopy. Hyperoxia exposure increased the total EV number. All three cell types released FGF2-18kDa both directly into the extracellular environment (secretome), as well as in EVs. HBE released more FGF2-18kDa in EVs during hyperoxia, and these were internalized and localized to both nuclei and cytoplasm of recipient cells. By co-immunoprecipitation, we identified potential binding partners of FGF2-18kDa in the nuclei, including histone 1.2 (H1.2) binding protein, that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. FGF2-18kDa interaction with H1.2 binding protein may indicate a mechanism by which FGF2 secreted in EVs modulates cellular processes. FGF2 was also found to increase angiogenesis by Matrigel assay. Further studies are necessary to determine the biological relevance of FGF2 in EVs as modulators of lung injury and disease.NEW & NOTEWORTHY We found that multiple lung cell types release basic fibroblast growth factor (FGF2)-18kDa both directly into the extracellular environment (secretome), as well as in extracellular vesicles (EVs). Bronchial epithelial cells released more FGF2-18kDa in EVs during hyperoxia, which could be internalized rapidly by recipient cells. We also identified potential binding partners of FGF2-18kDa in nuclei that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. We also confirmed a potential angiogenic role for FGF2-18kDa.


Assuntos
Vesículas Extracelulares , Fator 2 de Crescimento de Fibroblastos , Pulmão , Humanos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Vesículas Extracelulares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Hiperóxia/metabolismo , Hiperóxia/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Brônquios/metabolismo , Brônquios/patologia
11.
Am J Physiol Lung Cell Mol Physiol ; 327(5): L694-L711, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39316679

RESUMO

Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.


Assuntos
Displasia Broncopulmonar , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Hiperóxia , Recém-Nascido Prematuro , Pulmão , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Pulmão/metabolismo , Pulmão/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Proliferação de Células , Estresse Mecânico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética
12.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557899

RESUMO

The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the underlying mechanisms are not known. In a translational hyperoxia model, exposing mice pups at P5 to 80% oxygen for 48 h to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin-expressing interneurons until adulthood. Developmental delay of cortical myelin was observed, together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning and attention. These results demonstrate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate that an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.


Assuntos
Lesões Encefálicas/metabolismo , Neurônios GABAérgicos/metabolismo , Hiperóxia/metabolismo , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Nascimento Prematuro/metabolismo , Roedores/metabolismo , Animais , Linhagem Celular , Cognição/fisiologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/metabolismo , Comportamento Social
13.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500170

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Hiperóxia , MicroRNAs , Ratos , Animais , Células Cultivadas , Hiperóxia/metabolismo , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vesículas Extracelulares/fisiologia , Fibrose , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo
14.
Exp Lung Res ; 50(1): 25-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419581

RESUMO

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Hiperóxia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/metabolismo
15.
J Biochem Mol Toxicol ; 38(4): e23680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511245

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease in newborns, which severely influences the health of infants and lacks effective clinical treatment strategies. The pathogenesis of BPD is correlated to enhanced inflammation and activated oxidative stress (OS). The application of antioxidants and anti-inflammatory treatment could be hot spots for BPD treatment. Nesfatin-1, a peptide with a suppressive property against inflammation, was tested herein for its potential therapeutic value in BPD. Neonatal SD rats were stimulated with hyperoxia, followed by being intraperitoneally administered with 20 µg/kg/day Nesfatin-1 for 2 weeks. Decreased RAC value in lung tissues, increased wet weight/dry weight (W/D) pulmonary ratio and bronchoalveolar lavage fluid (BALF) proteins, elevated cytokine release in BALF, increased malondialdehyde (MDA) content, and declined superoxide dismutase (SOD) activity were observed in BPD rats, all of which were sharply mitigated by Nesfatin-1. Rat epithelial type II cells (AECIIs) were handled with hyperoxia, and then cultured with 1 and 10 nM Nesfatin-1. Reduced cell viability, elevated lactate dehydrogenase production, elevated cytokine secretion, elevated MDA content, and decreased SOD activity were observed in hyperoxia-handled AECIIs, all of which were markedly alleviated by Nesfatin-1. Furthermore, activated nuclear factor-κB (NF-κB) signaling observed in both BPD rats and hyperoxia-handled AECIIs were notably repressed by Nesfatin-1. Collectively, Nesfatin-1 alleviated hyperoxia-triggered BPD by repressing inflammation and OS via the NF-κB signaling pathway.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Humanos , Recém-Nascido , Ratos , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperóxia/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo
16.
Cell Biochem Funct ; 42(5): e4094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001564

RESUMO

Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.


Assuntos
Apoptose , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Tretinoína , Animais , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Tretinoína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Hiperóxia/metabolismo , Hiperóxia/tratamento farmacológico , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos
17.
Inhal Toxicol ; 36(3): 174-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449063

RESUMO

BACKGROUND: Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS: Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS: Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION: In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.


Assuntos
Hiperóxia , Humanos , Ratos , Animais , Masculino , Hiperóxia/complicações , Hiperóxia/metabolismo , Transporte de Elétrons , Ratos Wistar , Pulmão/metabolismo , Oxigênio , Estresse Oxidativo
18.
Adv Exp Med Biol ; 1463: 135-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39400813

RESUMO

BACKGROUND: In intermittent hypoxia-hyperoxia training (IHHT), air is inhaled through a mask, with the O2 content of the air varying at intervals. IHHT is used in sports training (e.g. to improve exercise tolerance), but also in medical-therapeutic applications (e.g. to improve cognitive performance and functional exercise capacity in geriatric patients). AIM: We aimed to evaluate the ability of a novel time-domain near-infrared spectroscopy (TD-NIRS) device to measure the effects of IHHT on cerebrovascular oxygenation and haemodynamics. SUBJECT AND METHODS: One subject (41 years old, male, athlete, colleague of the authors) performed an IHHT session as part of his regular training. In parallel, systemic physiological activity (arterial oxygenation (SpO2) and pulse rate (PR)) as well as cerebrovascular oxygenation (StO2) and haemodynamics (total haemoglobin concentration, [tHb]) were measured. For the measurement of StO2 and [tHb], a TD-NIRS device (NIRSBOX, PIONIRS, Italy) was employed. The TD-NIRS device uses two diode lasers (685 nm and 830 nm) as light sources and a solid-state light detector. The optode of the TD-NIRS device was placed over the left prefrontal cortex of the subject. The IHHT session had a total duration of 32 minutes and consisted of four cycles of hypoxia (5 min, O2: 10%) followed by hyperoxia (3 min, O2: 34%). RESULTS: The IHHT session caused significant changes in SpO2, HR, StO2 and [tHb]. The hypoxia/hyperoxia challenges resulted in a decrease in SpO2 from 97% to ~70% and decrease in StO2 from ~70 to ~60%. During the hypoxia intervals, HR increased from ~50 to ~60, while [tHb] increased only moderately (from ~64 to ~66 µM). CONCLUSIONS: The case study presented here demonstrates the feasibility of the novel TD-NIRS device to measure changes in cerebrovascular haemodynamics and oxygenation during an IHHT session. It was observed that an intense IHHT session causes significant cerebral hypoxia (decrease of StO2 by 10 percentage points). In contrast, cerebral haemodynamics (as indicated by changes in [tHb]) were only weakly influenced. Our study shows that IHHT can have a significant effect on the oxygen supply in the head, which should be taken into account in future applications of IHHT to prevent possible pathophysiological reactions that could be triggered by it.


Assuntos
Hipóxia Encefálica , Oximetria , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Oximetria/métodos , Adulto , Hipóxia Encefálica/fisiopatologia , Hipóxia Encefálica/terapia , Hiperóxia/fisiopatologia , Hiperóxia/metabolismo , Hipóxia/fisiopatologia , Circulação Cerebrovascular/fisiologia , Oxigênio/metabolismo , Oxigênio/sangue
19.
Cell Tissue Bank ; 25(1): 195-215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37365484

RESUMO

Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.


Assuntos
Hiperóxia , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Espécies Reativas de Oxigênio/metabolismo , Medicina Regenerativa , Hipóxia/metabolismo , Oxigênio/metabolismo , Radicais Livres
20.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397071

RESUMO

The "normobaric oxygen paradox" (NOP) describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as an oxygen shortage, up-regulating redox-sensitive transcription factors. We have previously characterized the time trend of oxygen-sensitive transcription factors in human PBMCs, in which the return to normoxia after 30% oxygen is sensed as a hypoxic trigger, characterized by hypoxia-induced factor (HIF-1) activation. On the contrary, 100% and 140% oxygen induce a shift toward an oxidative stress response, characterized by NRF2 and NF-kB activation in the first 24 h post exposure. Herein, we investigate whether this paradigm triggers Advanced Glycation End products (AGEs) and Advanced Oxidation Protein Products (AOPPs) as circulating biomarkers of oxidative stress. Secondly, we studied if mitochondrial biogenesis was involved to link the cellular response to oxidative stress in human PBMCs. Our results show that AGEs and AOPPs increase in a different manner according to oxygen dose. Mitochondrial levels of peroxiredoxin (PRX3) supported the cellular response to oxidative stress and increased at 24 h after mild hyperoxia, MH (30% O2), and high hyperoxia, HH (100% O2), while during very high hyperoxia, VHH (140% O2), the activation was significantly high only at 3 h after oxygen exposure. Mitochondrial biogenesis was activated through nuclear translocation of PGC-1α in all the experimental conditions. However, the consequent release of nuclear Mitochondrial Transcription Factor A (TFAM) was observed only after MH exposure. Conversely, HH and VHH are associated with a progressive loss of NOP response in the ability to induce TFAM expression despite a nuclear translocation of PGC-1α also occurring in these conditions. This study confirms that pulsed high oxygen treatment elicits specific cellular responses, according to its partial pressure and time of administration, and further emphasizes the importance of targeting the use of oxygen to activate specific effects on the whole organism.


Assuntos
Hiperóxia , Oxigênio , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Projetos Piloto , Biogênese de Organelas , Leucócitos Mononucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hipóxia , Estresse Oxidativo/fisiologia , Produtos Finais de Glicação Avançada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA