Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(20): 4228-4242.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686315

RESUMO

Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Núcleo Celular/enzimologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , RNA Neoplásico/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Núcleo Celular/genética , DNA Helicases/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Metilação , Neoplasias/genética , Proteínas Nucleares/genética , Estruturas R-Loop , RNA Neoplásico/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Transcrição Gênica , Ubiquitinação
2.
Nucleic Acids Res ; 52(5): 2273-2289, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38118002

RESUMO

Albeit N1-Methyladenosine (m1A) RNA modification represents an important regulator of RNA metabolism, the role of m1A modification in carcinogenesis remains enigmatic. Herein, we found that histone lactylation enhances ALKBH3 expression and simultaneously attenuates the formation of tumor-suppressive promyelocytic leukemia protein (PML) condensates by removing the m1A methylation of SP100A, promoting the malignant transformation of cancers. First, ALKBH3 is specifically upregulated in high-risk ocular melanoma due to excessive histone lactylation levels, referring to m1A hypomethylation status. Moreover, the multiomics analysis subsequently identified that SP100A, a core component for PML bodies, serves as a downstream candidate target for ALKBH3. Therapeutically, the silencing of ALKBH3 exhibits efficient therapeutic efficacy in melanoma both in vitro and in vivo, which could be reversed by the depletion of SP100A. Mechanistically, we found that YTHDF1 is responsible for recognition of the m1A methylated SP100A transcript, which increases its RNA stability and translational efficacy. Conclusively, we initially demonstrated that m1A modification is necessary for tumor suppressor gene expression, expanding the current understandings of dynamic m1A function during tumor progression. In addition, our results indicate that lactylation-driven ALKBH3 is essential for the formation of PML nuclear condensates, which bridges our knowledge of m1A modification, metabolic reprogramming, and phase-separation events.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Antígenos Nucleares , Autoantígenos , Neoplasias Oculares , Histonas , Melanoma , Humanos , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Desmetilação , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Neoplasias Oculares/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(28): e2119038119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867754

RESUMO

Studies on biological functions of RNA modifications such as N6-methyladenosine (m6A) in mRNA have sprung up in recent years, while the roles of N1-methyladenosine (m1A) in cancer progression remain largely unknown. We find m1A demethylase ALKBH3 can regulate the glycolysis of cancer cells via a demethylation activity dependent manner. Specifically, sequencing and functional studies confirm that ATP5D, one of the most important subunit of adenosine 5'-triphosphate synthase, is involved in m1A demethylase ALKBH3-regulated glycolysis of cancer cells. The m1A modified A71 at the exon 1 of ATP5D negatively regulates its translation elongation via increasing the binding with YTHDF1/eRF1 complex, which facilitates the release of message RNA (mRNA) from ribosome complex. m1A also regulates mRNA stability of E2F1, which directly binds with ATP5D promoter to initiate its transcription. Targeted specific demethylation of ATP5D m1A by dm1ACRISPR system can significantly increase the expression of ATP5D and glycolysis of cancer cells. In vivo data confirm the roles of m1A/ATP5D in tumor growth and cancer progression. Our study reveals a crosstalk of mRNA m1A modification and cell metabolism, which expands the understanding of such interplays that are essential for cancer therapeutic application.


Assuntos
Glicólise , ATPases Mitocondriais Próton-Translocadoras , Neoplasias , RNA Mensageiro , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Glicólise/genética , Humanos , Metilação , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , RNA Mensageiro/metabolismo
4.
Cell Commun Signal ; 22(1): 79, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291517

RESUMO

N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , RNA/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Metilação , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256217

RESUMO

Non-heme dioxygenases of the AlkB family hold a unique position among enzymes that repair alkyl lesions in nucleic acids. These enzymes activate the Fe(II) ion and molecular oxygen through the coupled decarboxylation of the 2-oxoglutarate co-substrate to subsequently oxidize the substrate. ALKBH3 is a human homolog of E. coli AlkB, which displays a specific activity toward N1-methyladenine and N3-methylcytosine bases in single-stranded DNA. Due to the lack of a DNA-bound structure of ALKBH3, the basis of its substrate specificity and structure-function relationships requires further exploration. Here we have combined biochemical and biophysical approaches with site-directed mutational analysis to elucidate the role of key amino acids in maintaining the secondary structure and catalytic activity of ALKBH3. Using stopped-flow fluorescence spectroscopy we have shown that conformational dynamics play a crucial role in the catalytic repair process catalyzed by ALKBH3. A transient kinetic mechanism, which comprises the steps of the specific substrate binding, eversion, and anchoring within the DNA-binding cleft, has been described quantitatively by rate and equilibrium constants. Through CD spectroscopy, we demonstrated that replacing side chains of Tyr143, Leu177, and His191 with alanine results in significant alterations in the secondary structure content of ALKBH3 and decreases the stability of mutant proteins. The bulky side chain of Tyr143 is critical for binding the methylated base and stabilizing its flipped-out conformation, while its hydroxyl group is likely involved in facilitating the product release. The removal of the Leu177 and His191 side chains substantially affects the secondary structure content and conformational flexibility, leading to the complete inactivation of the protein. The mutants lacking enzymatic activity exhibit a marked decrease in antiparallel ß-strands, offset by an increase in the helical component.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Metilação de DNA , Humanos , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Aminoácidos , DNA , Compostos Ferrosos
6.
Angew Chem Int Ed Engl ; 63(7): e202313900, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38158383

RESUMO

N1 -methyladenosine (m1 A) is a prevalent post-transcriptional RNA modification, and the distribution and dynamics of the modification play key epitranscriptomic roles in cell development. At present, the human AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family member ALKBH3 is the only known mRNA m1 A demethylase, but its catalytic mechanism remains unclear. Here, we present the structures of ALKBH3-oligo crosslinked complexes obtained with the assistance of a synthetic antibody crystallization chaperone. Structural and biochemical results showed that ALKBH3 utilized two ß-hairpins (ß4-loop-ß5 and ß'-loop-ß'') and the α2 helix to facilitate single-stranded substrate binding. Moreover, a bubble-like region around Asp194 and a key residue inside the active pocket (Thr133) enabled specific recognition and demethylation of m1 A- and 3-methylcytidine (m3 C)-modified substrates. Mutation of Thr133 to the corresponding residue in the AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family members FTO or ALKBH5 converted ALKBH3 substrate selectivity from m1 A to N6 -methyladenosine (m6 A), as did Asp194 deletion. Our findings provide a molecular basis for understanding the mechanisms of substrate recognition and m1 A demethylation by ALKBH3. This study is expected to aid structure-guided design of chemical probes for further functional studies and therapeutic applications.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , RNA , Humanos , RNA/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , RNA Mensageiro/metabolismo , Desmetilação , Compostos Ferrosos , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo
7.
J Biol Chem ; 298(2): 101545, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971705

RESUMO

Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and even cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3-Activating Signal Cointegrator 1 Complex Subunit (ASCC) repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains via its coupling of ubiquitin conjugation to ER degradation (CUE) domain. The basis for polyubiquitin-binding specificity was unclear, because CUE domains in other proteins typically bind a single ubiquitin and do not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. The ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, whereas the contacts with the proximal ubiquitin are unique to ASCC2. Residues in the N-terminal portion of the ASCC2 α1 helix contribute to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response. Our study reveals the versatility of CUE domains in ubiquitin recognition.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Reparo do DNA , Proteínas Nucleares , Poliubiquitina , Ubiquitina , Ubiquitinas , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , DNA/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
Nature ; 551(7680): 389-393, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144457

RESUMO

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Assuntos
Enzimas AlkB/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Síndromes de Tricotiodistrofia/genética , Ubiquitina/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Alquilantes/farmacologia , Alquilação , Sequência de Aminoácidos , Adutos de DNA/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Genes Ligados ao Cromossomo X , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia , Ubiquitinação
9.
J Cell Mol Med ; 26(20): 5292-5302, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36098205

RESUMO

Long noncoding RNAs (lncRNAs) are confirmed as the key regulators of hepatocellular carcinoma (HCC) occurrence and progression, but the role of AlkB homologue 3 antisense RNA 1 (ALKBH3-AS1) in HCC is unclear. We revealed the overexpression of ALKBH3-AS1 in HCC tissues. The upregulated levels of ALKBH3-AS1 were observed in HCC cells. ALKBH3-AS1 was expressed in the nucleus and cytoplasm of HCC cells. The high ALKBH3-AS1 expression was markedly associated with a decreased survival rate of HCC patients. ALKBH3-AS1 knockdown repressed and ALKBH3-AS1 overexpression enhanced HCC cell invasion and proliferation. ALKBH3-AS1 silencing restricted HCC growth in vivo. A significant positive correlation between ALKBH3-AS1 and ALKBH3 mRNA levels was confirmed in HCC specimens. ALKBH3-AS1 silencing reduced ALKBH3 expression by stabilizing its mRNA stability in HCC cells. Notably, the impact of ALKBH3 silencing on HCC cells was similar to that of ALKBH3-AS1 knockdown. ALKBH3 restoration prominently attenuated the suppressive effects resulting from ALKBH3-AS1 silencing in HCCLM3 cells. Hypoxia-inducible factor-1α (HIF-1α) transcriptionally activated ALKBH3-AS1 expression in hypoxic HCC cells. ALKBH3-AS1 knockdown markedly attenuated cell proliferation and invasion in hypoxic Huh7 cells. Collectively, HIF-1α-activated ALKBH3-AS1 exerted an oncogenic role by enhancing ALKBH3 mRNA stability in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Estabilidade de RNA , RNA Longo não Codificante , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , RNA Antissenso , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
10.
Chem Res Toxicol ; 35(10): 1814-1820, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584366

RESUMO

Understanding the occurrence, repair, and biological consequences of DNA damage is important in environmental toxicology and risk assessment. The most common way to assess DNA damage elicited by exogenous sources in a laboratory setting is to expose cells or experimental animals with chemicals that modify DNA. Owing to the lack of reaction specificities of DNA damaging agents, the approach frequently does not allow for induction of a specific DNA lesion. Herein, we employed metabolic labeling to selectively incorporate N2-methyl-dG (N2-MedG) and N2-n-butyl-dG (N2-nBudG) into genomic DNA of cultured mammalian cells, and investigated how the levels of the two lesions in cellular DNA are modulated by different DNA repair factors. Our results revealed that nucleotide excision repair (NER) exert moderate effects on the removal of N2-MedG and N2-nBudG from genomic DNA. We also observed that DNA polymerases κ and η contribute to the incorporation of N2-MedG into genomic DNA and modulate its repair in human cells. In addition, loss of ALKBH3 resulted in higher frequencies of N2-MedG and N2-nBuG incorporation into genomic DNA, suggesting a role of oxidative dealkylation in the reversal of these lesions. Together, our study provided new insights into the repair of minor-groove N2-alkyl-dG lesions in mammalian cells.


Assuntos
Desoxiguanosina , Espectrometria de Massas em Tandem , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Animais , Cromatografia Líquida , DNA , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/metabolismo , Genômica , Humanos , Mamíferos/genética , Mamíferos/metabolismo
11.
J Biol Chem ; 295(21): 7317-7326, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284330

RESUMO

AlkB is a bacterial Fe(II)- and 2-oxoglutarate-dependent dioxygenase that repairs a wide range of alkylated nucleobases in DNA and RNA as part of the adaptive response to exogenous nucleic acid-alkylating agents. Although there has been longstanding interest in the structure and specificity of Escherichia coli AlkB and its homologs, difficulties in assaying their repair activities have limited our understanding of their substrate specificities and kinetic mechanisms. Here, we used quantitative kinetic approaches to determine the transient kinetics of recognition and repair of alkylated DNA by AlkB. These experiments revealed that AlkB is a much faster alkylation repair enzyme than previously reported and that it is significantly faster than DNA repair glycosylases that recognize and excise some of the same base lesions. We observed that whereas 1,N6-ethenoadenine can be repaired by AlkB with similar efficiencies in both single- and double-stranded DNA, 1-methyladenine is preferentially repaired in single-stranded DNA. Our results lay the groundwork for future studies of AlkB and its human homologs ALKBH2 and ALKBH3.


Assuntos
Enzimas AlkB/química , Reparo do DNA , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Enzimas AlkB/genética , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , DNA/química , DNA/genética , DNA Bacteriano/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos
12.
J Transl Med ; 19(1): 287, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217309

RESUMO

BACKGROUND: Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. METHODS: Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. RESULTS: MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. CONCLUSIONS: Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic.


Assuntos
Citosina , Ribossomos , Adenosina/análogos & derivados , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Animais , Citosina/análogos & derivados , DNA Helicases , Humanos , RNA Helicases , RNA Mensageiro/genética , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
13.
Nucleic Acids Res ; 47(11): 5522-5529, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31114894

RESUMO

5-Methylcytosine (5mC) in DNA CpG islands is an important epigenetic biomarker for mammalian gene regulation. It is oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the ten-eleven translocation (TET) family enzymes, which are α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases. In this work, we demonstrate that the epigenetic marker 5mC is modified to 5hmC, 5fC, and 5caC in vitro by another class of α-KG/Fe(II)-dependent proteins-the DNA repair enzymes in the AlkB family, which include ALKBH2, ALKBH3 in huamn and AlkB in Escherichia coli. Theoretical calculations indicate that these enzymes may bind 5mC in the syn-conformation, placing the methyl group comparable to 3-methylcytosine, the prototypic substrate of AlkB. This is the first demonstration of the AlkB proteins to oxidize a methyl group attached to carbon, instead of nitrogen, on a DNA base. These observations suggest a broader role in epigenetics for these DNA repair proteins.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Enzimas AlkB/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Citosina/análogos & derivados , Enzimas AlkB/genética , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Animais , Biologia Computacional , Ilhas de CpG , Citosina/metabolismo , DNA/genética , Metilação de DNA , Epigênese Genética , Humanos , Estrutura Molecular , Oxirredução
14.
Nucleic Acids Res ; 47(22): 11729-11745, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31642493

RESUMO

The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Transferases/metabolismo , Alquilação , Células Cultivadas , Adutos de DNA/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Células PC-3 , Ligação Proteica , Rad51 Recombinase/metabolismo
15.
Nucleic Acids Res ; 47(5): 2533-2545, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30541109

RESUMO

Transfer RNA is heavily modified and plays a central role in protein synthesis and cellular functions. Here we demonstrate that ALKBH3 is a 1-methyladenosine (m1A) and 3-methylcytidine (m3C) demethylase of tRNA. ALKBH3 can promote cancer cell proliferation, migration and invasion. In vivo study confirms the regulation effects of ALKBH3 on growth of tumor xenograft. The m1A demethylated tRNA is more sensitive to angiogenin (ANG) cleavage, followed by generating tRNA-derived small RNAs (tDRs) around the anticodon regions. tDRs are conserved among species, which strengthen the ribosome assembly and prevent apoptosis triggered by cytochrome c (Cyt c). Our discovery opens a potential and novel paradigm of tRNA demethylase, which regulates biological functions via generation of tDRs.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Proliferação de Células/genética , Neoplasias/genética , RNA de Transferência/genética , Adenosina/análogos & derivados , Adenosina/genética , Animais , Apoptose/genética , Movimento Celular/genética , Citidina/análogos & derivados , Citidina/genética , Progressão da Doença , Células HeLa , Humanos , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Ribonuclease Pancreático/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Angew Chem Int Ed Engl ; 60(36): 19592-19597, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34081827

RESUMO

N1 -methyladenosine (m1 A) is a prevalent and reversible RNA modification, which plays a crucial role in the regulation of RNA fate and gene expression. However, the lack of tools to precisely manipulate m1 A sites in specific transcripts has hindered efforts to clarify the association between a specific m1 A-modified transcript and its phenotypic outcomes. Here we develop a CRISPR-Cas13d-based tool called reengineered m1 A modification valid eraser (termed "REMOVER") for targeted m1 A demethylation of a specific transcript. The catalytically inactive RfxCas13d (dCasRx) is fused to the m1 A demethylase ALKBH3, and the dCasRx-ALKBH3 fusion protein can mediate potent demethylation of m1 A-modified RNAs. We further find that REMOVER can specifically demethylate m1 A of MALAT1 and PRUNE1 RNAs, thereby significantly increasing their stability. Our study establishes REMOVER as a tool for targeted RNA demethylation of specific m1 A-modified transcripts, which enables further elucidation of the relationship between m1 A modification of specific transcripts and their phenotypic outcomes.


Assuntos
Adenosina/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/química , Desmetilação , Humanos , RNA/química
17.
PLoS Biol ; 15(11): e2002810, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107960

RESUMO

Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.


Assuntos
Enzimas AlkB/antagonistas & inibidores , Antineoplásicos Alquilantes/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glutaminase/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Alquilação/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Glutaminase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Sci ; 110(2): 742-750, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30549183

RESUMO

This first-in-man study was carried out to evaluate the safety, whole-body distribution, dose estimation, and lesion accumulation of 18 F-FSU-880, a newly developed probe targeting prostate-specific membrane antigen. Six prostate cancer patients with known metastatic lesions underwent serial whole-body PET/computed tomography (CT) with 18 F-FSU-880. Blood and urine were analyzed before and after PET/CT. Accumulation of 18 F-FSU-880 in organs and metastatic lesions in serial PET images were evaluated by measuring the standardized uptake values. From the biodistribution data, the organ doses and whole-body effective dose were calculated using OLINDA/EXM software was developed by Dr. Michael Stabin of Vanderbilt University, Nashville, Tennessee, USA. 18 F-FSU-880 PET/CT could be carried out without significant adverse effects. High physiological uptake was observed in the salivary/lachrymal glands and kidneys. The effective dose was calculated to be 0.921 × 10-2 mSv/MBq. Known metastatic lesions were clearly visualized with high image contrast that increased with time, except in 1 patient, whose bone metastases were well-controlled and inactive. The PET/CT with 18 F-FSU-880 could be carried out safely and could clearly visualize active metastatic lesions. The present results warrant further clinical studies with a larger number of cases to verify the clinical utility of 18 F-FSU-880 PET/CT in the management of prostate cancer patients.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Próstata/efeitos da radiação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual/fisiologia , Tomografia Computadorizada por Raios X/métodos
19.
EMBO J ; 34(12): 1687-703, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25944111

RESUMO

Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors.


Assuntos
Alquilação/fisiologia , Dano ao DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Dioxigenases/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteases Específicas de Ubiquitina/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Alquilação/genética , Western Blotting , Dano ao DNA/genética , Reparo do DNA/genética , Células HEK293 , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Modelos Biológicos , Espectrometria de Massas em Tandem
20.
Mol Cell ; 44(3): 373-84, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055184

RESUMO

Demethylation by the AlkB dioxygenases represents an important mechanism for repair of N-alkylated nucleotides. However, little is known about their functions in mammalian cells. We report the purification of the ALKBH3 complex and demonstrate its association with the activating signal cointegrator complex (ASCC). ALKBH3 is overexpressed in various cancers, and both ALKBH3 and ASCC are important for alkylation damage resistance in these tumor cell lines. ASCC3, the largest subunit of ASCC, encodes a 3'-5' DNA helicase, whose activity is crucial for the generation of single-stranded DNA upon which ALKBH3 preferentially functions for dealkylation. In cell lines that are dependent on ALKBH3 and ASCC3 for alkylation damage resistance, loss of ALKBH3 or ASCC3 leads to increased 3-methylcytosine and reduced cell proliferation, which correlates with pH2A.X and 53BP1 foci formation. Our data provide a molecular mechanism by which ALKBH3 collaborates with ASCC to maintain genomic integrity in a cell-type specific manner.


Assuntos
Proliferação de Células , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Dioxigenases/metabolismo , Neoplasias da Próstata/enzimologia , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Alquilação , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Dioxigenases/genética , Relação Dose-Resposta a Droga , Células HEK293 , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Metanossulfonato de Metila , Camundongos , Camundongos Endogâmicos NOD , Mutação , Transplante de Neoplasias , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA