Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.512.973
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 501-532, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226227

RESUMO

Respiratory syncytial virus (RSV) is an exceptional mucosal pathogen. It specializes in infection of the ciliated respiratory epithelium, causing disease of variable severity with little or no direct systemic effects. It infects virtually all children by the age of three years and then repeatedly infects throughout life; this it does despite relatively slight variations in antigenicity, apparently by inducing selective immunological amnesia. Inappropriate or dysregulated responses to RSV can be pathogenic, causing disease-enhancing inflammation that contributes to short- and long-term effects. In addition, RSV's importance as a largely unrecognized pathogen of debilitated older people is increasingly evident. Vaccines that induce nonpathogenic protective immunity may soon be available, and it is possible that different vaccines will be optimal for infants; older children; young to middle-age adults (including pregnant women); and elderly persons. At the dawn of RSV vaccination, it is timely to review what is known (and unknown) about immune responses to this fascinating virus.


Assuntos
Mucosa Respiratória/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinas Virais/imunologia , Adulto , Idoso , Animais , Criança , Humanos , Evasão da Resposta Imune , Imunomodulação , Mucosa Respiratória/virologia
2.
Cell ; 186(2): 382-397.e24, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669473

RESUMO

Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.


Assuntos
Regeneração Óssea , Vasos Linfáticos , Idoso , Animais , Humanos , Camundongos , Células Endoteliais , Linfangiogênese
3.
Cell ; 186(15): 3137-3137.e1, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37478816

RESUMO

Respiratory syncytial virus (RSV) is the most common cause of serious respiratory infection in infants. Reinfections occur commonly, including in older adults. For six decades, effective vaccines remained elusive. Stabilization of the prefusion conformation of the RSV glycoprotein F was critical for development of effective vaccines to prevent RSV in older adults. To view this Bench to Bedside, open or download the PDF.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Idoso , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas Virais de Fusão
4.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36610399

RESUMO

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Assuntos
Envelhecimento , Retrovirus Endógenos , Idoso , Animais , Humanos , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Senescência Celular , Retrovirus Endógenos/genética , Primatas
5.
Cell ; 186(7): 1417-1431.e20, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001502

RESUMO

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.


Assuntos
Antineoplásicos , Infecções por Citomegalovirus , Humanos , Idoso , Citomegalovirus , Linfócitos T Citotóxicos , Antígenos HLA , Linfócitos T CD4-Positivos , Senescência Celular
6.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774677

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Idoso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo
7.
Cell ; 185(26): 5028-5039.e13, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516855

RESUMO

Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C motif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ligantes , Encéfalo , Envelhecimento , Lipídeos , Biomarcadores
8.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995520

RESUMO

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Assuntos
Dermatoglifia , Dedos/crescimento & desenvolvimento , Organogênese/genética , Polimorfismo de Nucleotídeo Único , Dedos do Pé/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Povo Asiático/genética , Padronização Corporal/genética , Criança , Estudos de Coortes , Feminino , Membro Anterior/crescimento & desenvolvimento , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
9.
Cell ; 185(4): 729-745.e20, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35063085

RESUMO

Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Adulto , Idoso , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/imunologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Variação Genética , Humanos , Evasão da Resposta Imune , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Células Mieloides/patologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Linfócitos T/imunologia
10.
Cell ; 185(2): 266-282.e15, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35026153

RESUMO

HIV-1-infected cells that persist despite antiretroviral therapy (ART) are frequently considered "transcriptionally silent," but active viral gene expression may occur in some cells, challenging the concept of viral latency. Applying an assay for profiling the transcriptional activity and the chromosomal locations of individual proviruses, we describe a global genomic and epigenetic map of transcriptionally active and silent proviral species and evaluate their longitudinal evolution in persons receiving suppressive ART. Using genome-wide epigenetic reference data, we show that proviral transcriptional activity is associated with activating epigenetic chromatin features in linear proximity of integration sites and in their inter- and intrachromosomal contact regions. Transcriptionally active proviruses were actively selected against during prolonged ART; however, this pattern was violated by large clones of virally infected cells that may outcompete negative selection forces through elevated intrinsic proliferative activity. Our results suggest that transcriptionally active proviruses are dynamically evolving under selection pressure by host factors.


Assuntos
HIV-1/genética , Provírus/genética , Transcrição Gênica , Idoso , Sequência de Bases , Evolução Biológica , Cromatina/metabolismo , Células Clonais , DNA Viral/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Ionomicina/farmacologia , Masculino , Pessoa de Meia-Idade , Filogenia , Provírus/efeitos dos fármacos , RNA Viral/genética , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica/efeitos dos fármacos , Integração Viral/genética , Latência Viral/efeitos dos fármacos , Latência Viral/genética
11.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032429

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Ativação do Complemento , Proteoma , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Fatores Quimiotáticos/metabolismo , Citotoxicidade Imunológica , Células Endoteliais/virologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Microvasos/virologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análise de Célula Única , Adulto Jovem
12.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35216672

RESUMO

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Convalescença , Imunidade Adaptativa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Progressão da Doença , Feminino , Humanos , Imunidade Inata/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Transcriptoma , Adulto Jovem , Síndrome de COVID-19 Pós-Aguda
13.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051367

RESUMO

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , Busca de Comunicante/métodos , Surtos de Doenças , Feminino , Genoma Viral , Humanos , Lactente , Recém-Nascido , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , Vacinação , Sequenciamento Completo do Genoma , Adulto Jovem
14.
Nat Immunol ; 25(2): 316-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182669

RESUMO

Pneumococcal infections cause serious illness and death among older adults. The capsular polysaccharide vaccine PPSV23 and conjugated alternative PCV13 can prevent these infections; yet, underlying immunological responses and baseline predictors remain unknown. We vaccinated 39 older adults (>60 years) with PPSV23 or PCV13 and observed comparable antibody responses (day 28) and plasmablast transcriptional responses (day 10); however, the baseline predictors were distinct. Analyses of baseline flow cytometry and bulk and single-cell RNA-sequencing data revealed a baseline phenotype specifically associated with weaker PCV13 responses, which was characterized by increased expression of cytotoxicity-associated genes, increased frequencies of CD16+ natural killer cells and interleukin-17-producing helper T cells and a decreased frequency of type 1 helper T cells. Men displayed this phenotype more robustly and mounted weaker PCV13 responses than women. Baseline expression levels of a distinct gene set predicted PPSV23 responses. This pneumococcal precision vaccinology study in older adults uncovered distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.


Assuntos
Anticorpos Antibacterianos , Streptococcus pneumoniae , Masculino , Humanos , Feminino , Idoso , Vacinas Conjugadas , Método Duplo-Cego , Vacinação , Vacinas Pneumocócicas , Polissacarídeos
15.
Nat Immunol ; 25(5): 802-819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684922

RESUMO

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Assuntos
Macrófagos , Neoplasias , Sepse , Humanos , Sepse/imunologia , Macrófagos/imunologia , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animais , Linfócitos T/imunologia , Receptores CCR2/metabolismo , Pessoa de Meia-Idade , Camundongos , Idoso , Quimiocinas/metabolismo , Adulto
16.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34890551

RESUMO

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
17.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838112

RESUMO

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Feminino , Instabilidade Genômica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Adulto Jovem
18.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
19.
Cell ; 184(8): 1990-2019, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811810

RESUMO

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Assuntos
Envelhecimento , Senescência Celular , Pneumopatias , Pulmão , Imunidade Adaptativa , Idoso , Envelhecimento/imunologia , Envelhecimento/patologia , COVID-19/imunologia , COVID-19/patologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Pneumopatias/imunologia , Pneumopatias/patologia , Estresse Oxidativo
20.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33657410

RESUMO

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Assuntos
COVID-19/imunologia , Megacariócitos/imunologia , Monócitos/imunologia , RNA Viral , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , China , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , RNA Viral/isolamento & purificação , Análise de Célula Única , Transcriptoma/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA