Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138.684
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(22): 4885-4897.e14, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804832

RESUMO

Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.


Assuntos
Hipocampo , Córtex Pré-Frontal , Humanos , Encéfalo , Lobo Frontal , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Córtex Pré-Frontal/fisiologia
2.
Nat Immunol ; 20(6): 701-710, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110314

RESUMO

Cachexia represents a leading cause of morbidity and mortality in various cancers, chronic inflammation and infections. Understanding of the mechanisms that drive cachexia has remained limited, especially for infection-associated cachexia (IAC). In the present paper we describe a model of reversible cachexia in mice with chronic viral infection and identify an essential role for CD8+ T cells in IAC. Cytokines linked to cancer-associated cachexia did not contribute to IAC. Instead, virus-specific CD8+ T cells caused morphologic and molecular changes in the adipose tissue, which led to depletion of lipid stores. These changes occurred at a time point that preceded the peak of the CD8+ T cell response and required T cell-intrinsic type I interferon signaling and antigen-specific priming. Our results link systemic antiviral immune responses to adipose-tissue remodeling and reveal an underappreciated role of CD8+ T cells in IAC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Caquexia/etiologia , Viroses/complicações , Viroses/imunologia , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/virologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Caquexia/diagnóstico por imagem , Caquexia/metabolismo , Caquexia/patologia , Doença Crônica , Citocinas/sangue , Citocinas/metabolismo , Feminino , Interferon Tipo I/metabolismo , Metabolismo dos Lipídeos , Lipólise , Ativação Linfocitária/imunologia , Vírus da Coriomeningite Linfocítica , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Transdução de Sinais , Viroses/virologia
3.
Nat Rev Neurosci ; 24(7): 416-430, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237103

RESUMO

The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Cognição , Tálamo/fisiologia , Neuroimagem , Vias Neurais/fisiologia
4.
Nat Rev Neurosci ; 24(3): 173-189, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456807

RESUMO

The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.


Assuntos
Córtex Cerebral , Giro do Cíngulo , Animais , Humanos , Giro do Cíngulo/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Memória , Imageamento por Ressonância Magnética/métodos
5.
Nature ; 604(7906): 525-533, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388223

RESUMO

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.


Assuntos
Encéfalo , Longevidade , Estatura , Encéfalo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
6.
Nature ; 603(7902): 654-660, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296861

RESUMO

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Cognição , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Fenótipo , Reprodutibilidade dos Testes
7.
Annu Rev Neurosci ; 42: 407-432, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283895

RESUMO

The brain's function is to enable adaptive behavior in the world. To this end, the brain processes information about the world. The concept of representation links the information processed by the brain back to the world and enables us to understand what the brain does at a functional level. The appeal of making the connection between brain activity and what it represents has been irresistible to neuroscience, despite the fact that representational interpretations pose several challenges: We must define which aspects of brain activity matter, how the code works, and how it supports computations that contribute to adaptive behavior. It has been suggested that we might drop representational language altogether and seek to understand the brain, more simply, as a dynamical system. In this review, we argue that the concept of representation provides a useful link between dynamics and computational function and ask which aspects of brain activity should be analyzed to achieve a representational understanding. We peel the onion of brain representations in search of the layers (the aspects of brain activity) that matter to computation. The article provides an introduction to the motivation and mathematics of representational models, a critical discussion of their assumptions and limitations, and a preview of future directions in this area.


Assuntos
Mapeamento Encefálico , Encéfalo/patologia , Cognição/fisiologia , Modelos Neurológicos , Humanos , Imageamento por Ressonância Magnética/métodos
8.
Nat Methods ; 21(9): 1736-1742, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014074

RESUMO

Neuroimaging data analysis relies on normalization to standard anatomical templates to resolve macroanatomical differences across brains. Existing human cortical surface templates sample locations unevenly because of distortions introduced by inflation of the folded cortex into a standard shape. Here we present the onavg template, which affords uniform sampling of the cortex. We created the onavg template based on openly available high-quality structural scans of 1,031 brains-25 times more than existing cortical templates. We optimized the vertex locations based on cortical anatomy, achieving an even distribution. We observed consistently higher multivariate pattern classification accuracies and representational geometry inter-participant correlations based on onavg than on other templates, and onavg only needs three-quarters as much data to achieve the same performance compared with other templates. The optimized sampling also reduces CPU time across algorithms by 1.3-22.4% due to less variation in the number of vertices in each searchlight.


Assuntos
Algoritmos , Córtex Cerebral , Humanos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neurociências/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino
9.
PLoS Biol ; 22(6): e3002669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905164

RESUMO

Throughout human life, the brain undergoes intricate structural changes that support cognition. A study in PLOS Biology introduces new avenues for depicting the trajectory of the brain morphometric connectome and its underlying genetic and molecular mechanisms.


Assuntos
Encéfalo , Conectoma , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Humanos , Longevidade/fisiologia , Imageamento por Ressonância Magnética/métodos
10.
PLoS Biol ; 22(1): e3002452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198502

RESUMO

Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.


Assuntos
Mapeamento Encefálico , Tomada de Decisões , Humanos , Mapeamento Encefálico/métodos , Assunção de Riscos , Incerteza , Lobo Parietal , Imageamento por Ressonância Magnética/métodos
11.
PLoS Biol ; 22(6): e3002624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941452

RESUMO

Comparative research suggests that the hypothalamus is critical in switching between survival behaviors, yet it is unclear if this is the case in humans. Here, we investigate the role of the human hypothalamus in survival switching by introducing a paradigm where volunteers switch between hunting and escape in response to encounters with a virtual predator or prey. Given the small size and low tissue contrast of the hypothalamus, we used deep learning-based segmentation to identify the individual-specific hypothalamus and its subnuclei as well as an imaging sequence optimized for hypothalamic signal acquisition. Across 2 experiments, we employed computational models with identical structures to explain internal movement generation processes associated with hunting and escaping. Despite the shared structure, the models exhibited significantly different parameter values where escaping or hunting were accurately decodable just by computing the parameters of internal movement generation processes. In experiment 2, multi-voxel pattern analyses (MVPA) showed that the hypothalamus, hippocampus, and periaqueductal gray encode switching of survival behaviors while not encoding simple motor switching outside of the survival context. Furthermore, multi-voxel connectivity analyses revealed a network including the hypothalamus as encoding survival switching and how the hypothalamus is connected to other regions in this network. Finally, model-based fMRI analyses showed that a strong hypothalamic multi-voxel pattern of switching is predictive of optimal behavioral coordination after switching, especially when this signal was synchronized with the multi-voxel pattern of switching in the amygdala. Our study is the first to identify the role of the human hypothalamus in switching between survival behaviors and action organization after switching.


Assuntos
Hipotálamo , Imageamento por Ressonância Magnética , Humanos , Hipotálamo/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Adulto Jovem , Hipocampo/fisiologia , Reação de Fuga/fisiologia , Aprendizado Profundo , Mapeamento Encefálico/métodos , Substância Cinzenta Periaquedutal/fisiologia
12.
PLoS Biol ; 22(10): e3002797, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39378200

RESUMO

Our behavior and mental states are constantly shaped by our environment and experiences. However, little is known about the response of brain functional connectivity to environmental, physiological, and behavioral changes on different timescales, from days to months. This gives rise to an urgent need for longitudinal studies that collect high-frequency data. To this end, for a single subject, we collected 133 days of behavioral data with smartphones and wearables and performed 30 functional magnetic resonance imaging (fMRI) scans measuring attention, memory, resting state, and the effects of naturalistic stimuli. We find traces of past behavior and physiology in brain connectivity that extend up as far as 15 days. While sleep and physical activity relate to brain connectivity during cognitively demanding tasks, heart rate variability and respiration rate are more relevant for resting-state connectivity and movie-watching. This unique data set is openly accessible, offering an exceptional opportunity for further discoveries. Our results demonstrate that we should not study brain connectivity in isolation, but rather acknowledge its interdependence with the dynamics of the environment, changes in lifestyle, and short-term fluctuations such as transient illnesses or restless sleep. These results reflect a prolonged and sustained relationship between external factors and neural processes. Overall, precision mapping designs such as the one employed here can help to better understand intraindividual variability, which may explain some of the observed heterogeneity in fMRI findings. The integration of brain connectivity, physiology data and environmental cues will propel future environmental neuroscience research and support precision healthcare.


Assuntos
Encéfalo , Estilo de Vida , Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Longitudinais , Neuroimagem/métodos , Masculino , Adulto , Sono/fisiologia , Mapeamento Encefálico/métodos , Feminino , Atenção/fisiologia , Meio Ambiente
13.
PLoS Biol ; 22(9): e3002808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39316635

RESUMO

Neural activity and behavior vary within an individual (states) and between individuals (traits). However, the mapping of state-trait neural variation to behavior is not well understood. To address this gap, we quantify moment-to-moment changes in brain-wide co-activation patterns derived from resting-state functional magnetic resonance imaging. In healthy young adults, we identify reproducible spatiotemporal features of co-activation patterns at the single-subject level. We demonstrate that a joint analysis of state-trait neural variations and feature reduction reveal general motifs of individual differences, encompassing state-specific and general neural features that exhibit day-to-day variability. The principal neural variations co-vary with the principal variations of behavioral phenotypes, highlighting cognitive function, emotion regulation, alcohol and substance use. Person-specific probability of occupying a particular co-activation pattern is reproducible and associated with neural and behavioral features. This combined analysis of state-trait variations holds promise for developing reproducible neuroimaging markers of individual life functional outcome.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto Jovem , Adulto , Mapeamento Encefálico/métodos , Comportamento/fisiologia , Cognição/fisiologia , Reprodutibilidade dos Testes
14.
PLoS Biol ; 22(4): e3002564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557761

RESUMO

Behavioral and neuroscience studies in humans and primates have shown that memorability is an intrinsic property of an image that predicts its strength of encoding into and retrieval from memory. While previous work has independently probed when or where this memorability effect may occur in the human brain, a description of its spatiotemporal dynamics is missing. Here, we used representational similarity analysis (RSA) to combine functional magnetic resonance imaging (fMRI) with source-estimated magnetoencephalography (MEG) to simultaneously measure when and where the human cortex is sensitive to differences in image memorability. Results reveal that visual perception of High Memorable images, compared to Low Memorable images, recruits a set of regions of interest (ROIs) distributed throughout the ventral visual cortex: a late memorability response (from around 300 ms) in early visual cortex (EVC), inferior temporal cortex, lateral occipital cortex, fusiform gyrus, and banks of the superior temporal sulcus. Image memorability magnitude results are represented after high-level feature processing in visual regions and reflected in classical memory regions in the medial temporal lobe (MTL). Our results present, to our knowledge, the first unified spatiotemporal account of visual memorability effect across the human cortex, further supporting the levels-of-processing theory of perception and memory.


Assuntos
Encéfalo , Percepção Visual , Animais , Humanos , Percepção Visual/fisiologia , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
15.
PLoS Biol ; 22(6): e3002647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900742

RESUMO

The human brain is organized as segregation and integration units and follows complex developmental trajectories throughout life. The cortical manifold provides a new means of studying the brain's organization in a multidimensional connectivity gradient space. However, how the brain's morphometric organization changes across the human lifespan remains unclear. Here, leveraging structural magnetic resonance imaging scans from 1,790 healthy individuals aged 8 to 89 years, we investigated age-related global, within- and between-network dispersions to reveal the segregation and integration of brain networks from 3D manifolds based on morphometric similarity network (MSN), combining multiple features conceptualized as a "fingerprint" of an individual's brain. Developmental trajectories of global dispersion unfolded along patterns of molecular brain organization, such as acetylcholine receptor. Communities were increasingly dispersed with age, reflecting more disassortative morphometric similarity profiles within a community. Increasing within-network dispersion of primary motor and association cortices mediated the influence of age on the cognitive flexibility of executive functions. We also found that the secondary sensory cortices were decreasingly dispersed with the rest of the cortices during aging, possibly indicating a shift of secondary sensory cortices across the human lifespan from an extreme to a more central position in 3D manifolds. Together, our results reveal the age-related segregation and integration of MSN from the perspective of a multidimensional gradient space, providing new insights into lifespan changes in multiple morphometric features of the brain, as well as the influence of such changes on cognitive performance.


Assuntos
Envelhecimento , Encéfalo , Cognição , Longevidade , Imageamento por Ressonância Magnética , Humanos , Adulto , Idoso , Cognição/fisiologia , Adolescente , Pessoa de Meia-Idade , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso de 80 Anos ou mais , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Adulto Jovem , Longevidade/fisiologia , Envelhecimento/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Função Executiva/fisiologia
16.
PLoS Biol ; 22(9): e3002653, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39292711

RESUMO

The modular structure of functional connectomes in the human brain undergoes substantial reorganization during development. However, previous studies have implicitly assumed that each region participates in one single module, ignoring the potential spatial overlap between modules. How the overlapping functional modules develop and whether this development is related to gray and white matter features remain unknown. Using longitudinal multimodal structural, functional, and diffusion MRI data from 305 children (aged 6 to 14 years), we investigated the maturation of overlapping modules of functional networks and further revealed their structural associations. An edge-centric network model was used to identify the overlapping modules, and the nodal overlap in module affiliations was quantified using the entropy measure. We showed a regionally heterogeneous spatial topography of the overlapping extent of brain nodes in module affiliations in children, with higher entropy (i.e., more module involvement) in the ventral attention, somatomotor, and subcortical regions and lower entropy (i.e., less module involvement) in the visual and default-mode regions. The overlapping modules developed in a linear, spatially dissociable manner, with decreased entropy (i.e., decreased module involvement) in the dorsomedial prefrontal cortex, ventral prefrontal cortex, and putamen and increased entropy (i.e., increased module involvement) in the parietal lobules and lateral prefrontal cortex. The overlapping modular patterns captured individual brain maturity as characterized by chronological age and were predicted by integrating gray matter morphology and white matter microstructural properties. Our findings highlight the maturation of overlapping functional modules and their structural substrates, thereby advancing our understanding of the principles of connectome development.


Assuntos
Encéfalo , Conectoma , Rede Nervosa , Humanos , Criança , Conectoma/métodos , Adolescente , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Masculino , Feminino , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem
17.
Proc Natl Acad Sci U S A ; 121(12): e2309232121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466844

RESUMO

Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.


Assuntos
Mapeamento Encefálico , Aprendizado Social , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Cognição , Descanso , Imageamento por Ressonância Magnética/métodos
18.
Proc Natl Acad Sci U S A ; 121(25): e2405588121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861607

RESUMO

Many animals can extract useful information from the vocalizations of other species. Neuroimaging studies have evidenced areas sensitive to conspecific vocalizations in the cerebral cortex of primates, but how these areas process heterospecific vocalizations remains unclear. Using fMRI-guided electrophysiology, we recorded the spiking activity of individual neurons in the anterior temporal voice patches of two macaques while they listened to complex sounds including vocalizations from several species. In addition to cells selective for conspecific macaque vocalizations, we identified an unsuspected subpopulation of neurons with strong selectivity for human voice, not merely explained by spectral or temporal structure of the sounds. The auditory representational geometry implemented by these neurons was strongly related to that measured in the human voice areas with neuroimaging and only weakly to low-level acoustical structure. These findings provide new insights into the neural mechanisms involved in auditory expertise and the evolution of communication systems in primates.


Assuntos
Percepção Auditiva , Imageamento por Ressonância Magnética , Neurônios , Vocalização Animal , Voz , Animais , Humanos , Neurônios/fisiologia , Voz/fisiologia , Imageamento por Ressonância Magnética/métodos , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Masculino , Macaca mulatta , Encéfalo/fisiologia , Estimulação Acústica , Mapeamento Encefálico/métodos
19.
Proc Natl Acad Sci U S A ; 121(35): e2400082121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178232

RESUMO

To efficiently yet reliably represent and process information, our brains need to produce information-rich signals that differentiate between moments or cognitive states, while also being robust to noise or corruption. For many, though not all, natural systems, these two properties are often inversely related: More information-rich signals are less robust, and vice versa. Here, we examined how these properties change with ongoing cognitive demands. To this end, we applied dimensionality reduction algorithms and pattern classifiers to functional neuroimaging data collected as participants listened to a story, temporally scrambled versions of the story, or underwent a resting state scanning session. We considered two primary aspects of the neural data recorded in these different experimental conditions. First, we treated the maximum achievable decoding accuracy across participants as an indicator of the "informativeness" of the recorded patterns. Second, we treated the number of features (components) required to achieve a threshold decoding accuracy as a proxy for the "compressibility" of the neural patterns (where fewer components indicate greater compression). Overall, we found that the peak decoding accuracy (achievable without restricting the numbers of features) was highest in the intact (unscrambled) story listening condition. However, the number of features required to achieve comparable classification accuracy was also lowest in the intact story listening condition. Taken together, our work suggests that our brain networks flexibly reconfigure according to ongoing task demands and that the activity patterns associated with higher-order cognition and high engagement are both more informative and more compressible than the activity patterns associated with lower-order tasks and lower engagement.


Assuntos
Encéfalo , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Adulto Jovem , Algoritmos
20.
Proc Natl Acad Sci U S A ; 121(24): e2317707121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830105

RESUMO

Human pose, defined as the spatial relationships between body parts, carries instrumental information supporting the understanding of motion and action of a person. A substantial body of previous work has identified cortical areas responsive to images of bodies and different body parts. However, the neural basis underlying the visual perception of body part relationships has received less attention. To broaden our understanding of body perception, we analyzed high-resolution fMRI responses to a wide range of poses from over 4,000 complex natural scenes. Using ground-truth annotations and an application of three-dimensional (3D) pose reconstruction algorithms, we compared similarity patterns of cortical activity with similarity patterns built from human pose models with different levels of depth availability and viewpoint dependency. Targeting the challenge of explaining variance in complex natural image responses with interpretable models, we achieved statistically significant correlations between pose models and cortical activity patterns (though performance levels are substantially lower than the noise ceiling). We found that the 3D view-independent pose model, compared with two-dimensional models, better captures the activation from distinct cortical areas, including the right posterior superior temporal sulcus (pSTS). These areas, together with other pose-selective regions in the LOTC, form a broader, distributed cortical network with greater view-tolerance in more anterior patches. We interpret these findings in light of the computational complexity of natural body images, the wide range of visual tasks supported by pose structures, and possible shared principles for view-invariant processing between articulated objects and ordinary, rigid objects.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Percepção Visual/fisiologia , Postura/fisiologia , Adulto Jovem , Imageamento Tridimensional/métodos , Estimulação Luminosa/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA