Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 104(2): 533-587, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561137

RESUMO

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.


Assuntos
Pulmão , Insuficiência de Múltiplos Órgãos , Humanos , Insuficiência de Múltiplos Órgãos/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732114

RESUMO

Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.


Assuntos
Biomarcadores , Exossomos , Insuficiência de Múltiplos Órgãos , Sepse , Humanos , Exossomos/metabolismo , Sepse/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/etiologia , Animais
3.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G279-G285, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37461868

RESUMO

During acute pancreatitis (AP), free fatty acids (FFAs) are liberated from circulating triglycerides (TG) and injured adipocytes by pancreatic lipase. Circulating FFAs have been suspected as a source of systemic lipotoxicity in AP. However, assessment of FFAs is difficult and time-consuming, and little is known about relative levels of FFAs between patients with different severities of AP and controls. This study's aims were to assess early circulating levels of FFAs, (both saturated and unsaturated) in patients with AP vs. controls, and associations between FFA levels and AP severity. Serum samples from patients with AP were collected at enrollment (day 1 of hospital stay); serum samples were also collected from controls. FFAs including palmitic, palmitoleic, stearic, oleic, and linoleic acid were extracted and quantitated using gas chromatography separation. Severity of AP was determined by Revised Atlanta Classification. Differences in FFA levels and percentages of total FFAs were assessed between patients with AP and controls and patients with AP of different severity grades. A total of 93 patients with AP (48 female, 52%) and 29 controls (20 female, 69%) were enrolled. Of the patients with AP, 74 had mild/moderate and 19 had severe AP. Serum levels of all FFAs except stearic acid were significantly higher in patients with AP compared with controls. A strong and independent association between elevated palmitoleic acid levels and severe AP was found. Serum unsaturated FFA levels, specifically palmitoleic acid, appear to correlate with severe AP. These findings have potential clinical implications for targeted AP therapies.NEW & NOTEWORTHY Drivers of the inflammatory response in acute pancreatitis remain incompletely understood. Unsaturated fatty acids, specifically palmitoleic, appear to have an association with more severe acute pancreatitis. This finding presents a new clinical understanding of fatty acid toxicity and highlights a potential future target for treatment in severe acute pancreatitis.


Assuntos
Ácidos Graxos não Esterificados , Insuficiência de Múltiplos Órgãos , Pancreatite , Humanos , Doença Aguda , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos Insaturados/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Estudos de Casos e Controles
4.
Blood ; 138(2): 178-189, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33598692

RESUMO

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de Sobrevida
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047303

RESUMO

Sepsis is defined as a dysregulated host response leading to organ dysfunction, which may ultimately result in the patient's death. Mitochondrial dysfunction plays a key role in developing organ dysfunction in sepsis. In this study, we explored the efficacy of the novel mitochondrial protective compound, SUL-138, in sepsis models in HUVECs and mice. In LPS-challenged HUVECs, SUL-138 preserved mitochondrial membrane potential and oxygen consumption and limited mitochondrial oxidative stress, resulting in increased survival at 48 h. Further, SUL-138 dampened the LPS-induced expression of IL-1ß, but not of NLRP3, and IL-18 in HUVECs. Sepsis in mice induced by cecal ligation and puncture (CLP) led to a lower mitochondrial membrane potential and increased levels of mitochondrial oxidative stress in the kidney, which SUL-138 limited. In addition, SUL-138 mitigated the CLP-induced increase in kidney dysfunction markers NGAL and urea. It dampened the rise in kidney expression of IL-6, IL-1ß, and ICAM-1, but not TNF-α and E-selectin. Yet, SUL-138 limited the increase in plasma levels of IL-6 and TNF-α of CLP mice. These results demonstrate that SUL-138 supports mitochondrial function, resulting in a limitation of systemic inflammation and preservation of kidney function.


Assuntos
Interleucina-6 , Sepse , Camundongos , Animais , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Rim/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Mitocôndrias/metabolismo
6.
Am J Physiol Renal Physiol ; 322(6): F589-F596, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35379000

RESUMO

Acute kidney injury (AKI) is a systemic inflammatory disease that contributes to remote organ failures. Multiple organ failure is the leading cause of death due to AKI, and lack of understanding of the mechanisms involved has precluded the development of novel therapies. Mitochondrial injury in AKI leads to mitochondrial fragmentation and release of damage-associated molecular patterns, which are known to active innate immune pathways and systemic inflammation. This review presents current evidence suggesting that extracellular mitochondrial damage-associated molecular patterns are mediators of remote organ failures during AKI that have the potential to be modifiable.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Mitocôndrias/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo
7.
J Immunol ; 204(7): 1929-1942, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32111733

RESUMO

The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.


Assuntos
Injúria Renal Aguda/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Sepse/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Caspases/metabolismo , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Túbulos Renais/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
8.
Exp Cell Res ; 406(2): 112756, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384779

RESUMO

Sepsis, an inflammation-related clinical syndrome, is characterized by disrupted immune homeostasis accompanied by infection and multiple organ dysfunction as determined by the Sequential Organ Failure Assessment (SOFA). Substantial evidence has recently suggested that lncRNAs orchestrate various biological processes in diseases, and lncRNAs play special roles in the diagnosis and management of sepsis. To date, very few reviews have provided clear and comprehensive clues to demonstrate the roles of lncRNAs in the pathogenesis of sepsis. Based on previously published studies, in this review, we summarize the different functions of lncRNAs in sepsis-induced cellular disorders and sepsis-induced organ failure to show the potential roles of lncRNAs in the diagnosis and management of sepsis. We further depict the function of some lncRNAs known to be pivotal regulators in the pathogenesis of sepsis to discuss the underlying molecular events. Additionally, we list and discuss several hotspots in research on lncRNAs, which may be conducive to future lncRNA-targeted therapeutic approaches for sepsis treatment.


Assuntos
Inflamação/patologia , Insuficiência de Múltiplos Órgãos/patologia , RNA Longo não Codificante/genética , Sepse/complicações , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Sepse/genética
9.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012630

RESUMO

Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.


Assuntos
MicroRNAs , Sepse , Regulação da Expressão Gênica , Humanos , Macrófagos/metabolismo , MicroRNAs/metabolismo , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/metabolismo , Sepse/complicações , Sepse/genética , Sepse/metabolismo
10.
J Cell Physiol ; 236(11): 7814-7831, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33885157

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a cellular signal transcription factor that has recently attracted a great deal of attention. It can trigger a variety of genes transcription in response to cytokines and growth factors stimulation, which plays an important role in many cellular biological processes involved in anti/proinflammatory responses. Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. As a converging point of multiple inflammatory responses pathways, accumulating studies have presented the elaborate network of STAT3 in sepsis pathophysiology; these results generally indicate a promising therapeutic application for targeting STAT3 in the treatment of sepsis. In the present review, we evaluated the published literature describing the use of STAT3 in the treatment of experimental and clinical sepsis. The information presented here may be useful for the design of future studies and may highlight the potential of STAT3 as a future biomarker and therapeutic target for sepsis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/prevenção & controle , Fosforilação , Fator de Transcrição STAT3/metabolismo , Sepse/imunologia , Sepse/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L429-L439, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009034

RESUMO

Levels of circulating cell-free hemoglobin are elevated during hemolytic and inflammatory diseases and contribute to organ dysfunction and severity of illness. Though several studies have investigated the contribution of hemoglobin to tissue injury, the precise signaling mechanisms of hemoglobin-mediated endothelial dysfunction in the lung and other organs are not yet completely understood. The purpose of this review is to highlight the knowledge gained thus far and the need for further investigation regarding hemoglobin-mediated endothelial inflammation and injury to develop novel therapeutic strategies targeting the damaging effects of cell-free hemoglobin.


Assuntos
Endotélio Vascular/metabolismo , Hemoglobinas/metabolismo , Hemólise , Pulmão/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Doenças Vasculares/metabolismo , Animais , Endotélio Vascular/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/terapia , Doenças Vasculares/patologia , Doenças Vasculares/terapia
12.
Am J Physiol Heart Circ Physiol ; 320(6): H2385-H2400, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989079

RESUMO

Cell-free hemoglobin (CFH) levels are elevated in septic shock and are higher in nonsurvivors. Whether CFH is only a marker of sepsis severity or is involved in pathogenesis is unknown. This study aimed to investigate whether CFH worsens sepsis-associated injuries and to determine potential mechanisms of harm. Fifty-one, 10-12 kg purpose-bred beagles were randomized to receive Staphylococcus aureus intrapulmonary challenges or saline followed by CFH infusions (oxyhemoglobin >80%) or placebo. Animals received antibiotics and intensive care support for 96 h. CFH significantly increased mean pulmonary arterial pressures and right ventricular afterload in both septic and nonseptic animals, effects that were significantly greater in nonsurvivors. These findings are consistent with CFH-associated nitric oxide (NO) scavenging and were associated with significantly depressed cardiac function, and worsened shock, lactate levels, metabolic acidosis, and multiorgan failure. In septic animals only, CFH administration significantly increased mean alveolar-arterial oxygenation gradients, also to a significantly greater degree in nonsurvivors. CFH-associated iron levels were significantly suppressed in infected animals, suggesting that bacterial iron uptake worsened pneumonia. Notably, cytokine levels were similar in survivors and nonsurvivors and were not predictive of outcome. In the absence and presence of infection, CFH infusions resulted in pulmonary hypertension, cardiogenic shock, and multiorgan failure, likely through NO scavenging. In the presence of infection alone, CFH infusions worsened oxygen exchange and lung injury, presumably by supplying iron that promoted bacterial growth. CFH elevation, a known consequence of clinical septic shock, adversely impacts sepsis outcomes through more than one mechanism, and is a biologically plausible, nonantibiotic, noncytokine target for therapeutic intervention.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) elevations are a known consequence of clinical sepsis. Using a two-by-two factorial design and extensive physiological and biochemical evidence, we found a direct mechanism of injury related to nitric oxide scavenging leading to pulmonary hypertension increasing right heart afterload, depressed cardiac function, worsening circulatory failure, and death, as well as an indirect mechanism related to iron toxicity. These discoveries alter conventional thinking about septic shock pathogenesis and provide novel therapeutic approaches.


Assuntos
Hemoglobinas/metabolismo , Pneumonia/metabolismo , Artéria Pulmonar/fisiopatologia , Choque Séptico/metabolismo , Infecções Estafilocócicas/metabolismo , Acidose/metabolismo , Acidose/fisiopatologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cães , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemoglobinas/farmacologia , Ferro/metabolismo , Ácido Láctico/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/fisiopatologia , Óxido Nítrico/metabolismo , Pneumonia/fisiopatologia , Troca Gasosa Pulmonar , Distribuição Aleatória , Choque Séptico/fisiopatologia , Staphylococcus aureus/crescimento & desenvolvimento
13.
Clin Exp Immunol ; 203(3): 433-447, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232517

RESUMO

Sepsis is an intractable clinical syndrome characterized by organ dysfunction when the body over-responds to an infection. Sepsis has a high fatality rate and lacks effective treatment. Family with sequence similarity 96 member A (FAM96A) is an evolutionarily conserved protein with high expression in the immune system and is related to cytosolic iron assembly and tumour suppression; however, research has been rarely conducted on its immune functions. Our study found that Fam96a-/- mice significantly resisted lesions during sepsis simulated by caecal ligation and puncture (CLP) or endotoxicosis models. After a challenge with lipopolysaccharide (LPS) or infection, Fam96a-/- mice exhibited less organ damage, longer survival and better bacterial clearance with decreased levels of proinflammatory cytokines. While screening several subsets of immune cells, FAM96A-expressing macrophages as the key cell type inhibited sepsis development. In-vivo macrophage depletion or adoptive transfer experiments abrogated significant differences in the survival of sepsis between Fam96a-/- and wild-type mice. Results of the bone marrow-derived macrophage (BMDM) polarization experiment indicated that FAM96A deficiency promotes the transformation of uncommitted monocytes/macrophages (M0) into M2 macrophages, secreting fewer proinflammatory cytokines. FAM96A may mediate an immunometabolism shift - from oxidative phosphorylation (OXPHOS) to glycolysis - in macrophages during sepsis, mirrored by reactive oxygen species (ROS) and glucose uptake. These data demonstrate that FAM96A regulates inflammatory response and provide a novel genomic insight for sepsis treatment.


Assuntos
Proteínas de Transporte/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Sepse/genética , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Citocinas/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/metabolismo , Análise de Sobrevida
14.
J Med Virol ; 93(3): 1652-1664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32949175

RESUMO

Multiorgan injury has been implicated in patients with coronavirus disease 2019 (COVID-19). We aim to assess the impact of organ injury (OI) on prognosis according to the number of affected organs at admission. This is a retrospective cohort study of patients with confirmed COVID-19 in Wuhan Third Hospital & Tongren Hospital of Wuhan University from February 17 to March 22, 2020. We classified the patients according to the presence and number of damaged organs (heart, liver, and kidney). The percentage of patients with no, one, two, or three organs affected was 59.75%, 30.46%, 8.07%, and 1.72%, respectively. With the increasing number of OI, there is a tendency of gradual increase regarding the white blood cell counts, neutrophil counts, levels of C-reactive protein (CRP), lactate dehydrogenase, D-dimer, and fibrinogen as well as the incidence of most complications. In a Cox regression model, individuals with OI, old age, and an abnormal level of CRP were at a higher risk of death compared with those without. Patients with three organ injuries had the highest mortality rate (57.9%; hazard ratio [HR] with 95% confidence interval [CI] vs. patients without OI: 22.31 [10.42-47.77], those with two [23.6%; HR = 8.68, 95% CI = 4.58-16.48], one [8.6%; HR = 3.1, 95% CI = 1.7-5.7], or no OI [2.6%]; p < .001). The increasing number of OI was associated with a high risk of mortality in COVID-19 infection.


Assuntos
COVID-19/mortalidade , Insuficiência de Múltiplos Órgãos/mortalidade , Idoso , Proteína C-Reativa/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Feminino , Fibrinogênio/metabolismo , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Incidência , L-Lactato Desidrogenase/metabolismo , Contagem de Leucócitos/métodos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/virologia , Prognóstico , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2/patogenicidade
15.
Pharmacol Res ; 168: 105581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781873

RESUMO

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Assuntos
Encefalopatias/terapia , Encéfalo/efeitos dos fármacos , COVID-19/terapia , Cardiopatias/terapia , Coração/efeitos dos fármacos , Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antivirais/administração & dosagem , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Cuidados Críticos/métodos , Estado Terminal/terapia , Suplementos Nutricionais , Alimento Funcional , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/terapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
16.
Pharmacol Res ; 172: 105781, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302975

RESUMO

Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Diterpenos do Tipo Caurano/uso terapêutico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Glutationa/metabolismo , Glicerofosfolipídeos/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Metabolômica , Camundongos Endogâmicos BALB C , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ácido Pantotênico/metabolismo , Purinas/metabolismo , Sepse/complicações , Sepse/imunologia , Sepse/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia
17.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806919

RESUMO

Argon inhalation attenuates multiorgan failure (MOF) after experimental ischemic injury. We hypothesized that this protection could involve decreased High Mobility Group Box 1 (HMGB1) systemic release. We investigated this issue in an animal model of MOF induced by aortic cross-clamping. Anesthetized rabbits were submitted to supra-coeliac aortic cross-clamping for 30 min, followed by 300 min of reperfusion. They were randomly divided into three groups (n = 7/group). The Control group inhaled nitrogen (70%) and oxygen (30%). The Argon group was exposed to a mixture of argon (70%) and oxygen (30%). The last group inhaled nitrogen/oxygen (70/30%) with an administration of the HMGB1 inhibitor glycyrrhizin (4 mg/kg i.v.) 5 min before aortic unclamping. At the end of follow-up, cardiac output was significantly higher in Argon and Glycyrrhizin vs. Control (60 ± 4 and 49 ± 4 vs. 33 ± 8 mL/kg/min, respectively). Metabolic acidosis was attenuated in Argon and Glycyrrhizin vs. Control, along with reduced amount of norepinephrine to reverse arterial hypotension. This was associated with reduced interleukin-6 and HMGB1 plasma concentration in Argon and Glycyrrhizin vs. Control. End-organ damages were also attenuated in the liver and kidney in Argon and Glycyrrhizin vs. Control, respectively. Argon inhalation reduced HMGB1 blood level after experimental aortic cross-clamping and provided similar benefits to direct HMGB1 inhibition.


Assuntos
Argônio/farmacologia , Proteína HMGB1/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/metabolismo , Animais , Biópsia , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Coelhos
18.
J Proteome Res ; 19(11): 4442-4454, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32806897

RESUMO

The metabolic effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on human blood plasma were characterized using multiplatform metabolic phenotyping with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Quantitative measurements of lipoprotein subfractions, α-1-acid glycoprotein, glucose, and biogenic amines were made on samples from symptomatic coronavirus disease 19 (COVID-19) patients who had tested positive for the SARS-CoV-2 virus (n = 17) and from age- and gender-matched controls (n = 25). Data were analyzed using an orthogonal-projections to latent structures (OPLS) method and used to construct an exceptionally strong (AUROC = 1) hybrid NMR-MS model that enabled detailed metabolic discrimination between the groups and their biochemical relationships. Key discriminant metabolites included markers of inflammation including elevated α-1-acid glycoprotein and an increased kynurenine/tryptophan ratio. There was also an abnormal lipoprotein, glucose, and amino acid signature consistent with diabetes and coronary artery disease (low total and HDL Apolipoprotein A1, low HDL triglycerides, high LDL and VLDL triglycerides), plus multiple highly significant amino acid markers of liver dysfunction (including the elevated glutamine/glutamate and Fischer's ratios) that present themselves as part of a distinct SARS-CoV-2 infection pattern. A multivariate training-test set model was validated using independent samples from additional SARS-CoV-2 positive patients and controls. The predictive model showed a sensitivity of 100% for SARS-CoV-2 positivity. The breadth of the disturbed pathways indicates a systemic signature of SARS-CoV-2 positivity that includes elements of liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk that are consistent with recent reports that COVID-19 is a systemic disease affecting multiple organs and systems. Metabolights study reference: MTBLS2014.


Assuntos
Aminoácidos/sangue , Infecções por Coronavirus , Lipoproteínas/sangue , Modelos Biológicos , Insuficiência de Múltiplos Órgãos , Pandemias , Pneumonia Viral , Idoso , Betacoronavirus , Biomarcadores , Glicemia/análise , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/metabolismo , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Metaboloma , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/metabolismo , Pneumonia Viral/sangue , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/metabolismo , SARS-CoV-2
19.
J Cell Physiol ; 235(10): 7239-7250, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039487

RESUMO

The Na-K-Cl cotransporter-1 (NKCC1), by mediating the electroneutral transport of Na+ , K+ , and Cl- plays an important role in cell volume regulation, epithelial transport, and the control of neuronal excitability. Recently, we reported the first known human mutation in SLC12A2, the gene encoding NKCC1. The 17-year old patient suffers from multiorgan failure. Laboratory tests conducted on muscle and liver biopsies of the patient showed abnormal increase in mitochondrial DNA copy number and increased glycogen levels, indicating the possibility that the transporter may play a role in energy metabolism. Here, we show that fibroblasts isolated from the patient demonstrate a significant increase in mitochondrial respiration, compared to fibroblasts isolated from healthy individuals. Similarly, Madin Darby canine kidney (MDCK) cells transfected with enhanced green fluorescent protein (EGFP)-tagged mutant NKCC1 DNA demonstrated increased mitochondrial respiration when compared to MDCK cells expressing EGFP-tagged wild-type (WT) cotransporter. Direct inhibition of the cotransporter through addition of bumetanide did not change the rate of basal respiration, but led to increased maximal mitochondrial respiration. Fibroblasts extracted from NKCC1WT/DFX and NKCC1DFX/DFX mice also demonstrated a significant elevation in mitochondrial respiration, compared to fibroblasts isolated from their WT littermates. Expression of the mutant protein was associated with an increase in hydrogen peroxide and peroxidase activity and a decrease in messenger RNA transcript levels for protein involved in the unfolded protein response. These data reveal that cells expressing the mutant cotransporter demonstrate increased mitochondrial respiration and behave like they are experiencing a state of starvation.


Assuntos
Mutação , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Adolescente , Animais , Linhagem Celular , DNA Mitocondrial/metabolismo , Cães , Metabolismo Energético/genética , Feminino , Fibroblastos/metabolismo , Glicólise , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Membro 2 da Família 12 de Carreador de Soluto/química
20.
J Immunol ; 200(5): 1817-1828, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374076

RESUMO

Indirect acute respiratory distress syndrome (iARDS) is caused by a nonpulmonary inflammatory process resulting from insults such as nonpulmonary sepsis. Neutrophils are thought to play a significant role in mediating ARDS, with the development of iARDS being characterized by dysregulation and recruitment of activated neutrophils into the lung. Recently, a novel mechanism of microbial killing by neutrophils was identified through the formation of neutrophil extracellular traps (NETs). NETs are composed of large webs of decondensed chromatin released from activated neutrophils into the extracellular space; they are regulated by the enzyme peptidylarginine deiminase 4 (PAD4) through mediation of chromatin decondensation via citrullination of target histones. Components of NETs have been implicated in ARDS. However, it is unknown whether there is any pathological significance of NET formation in ARDS caused indirectly by nonpulmonary insult. We subjected PAD4-/- mice and wild-type mice to a "two-hit" model of hypovolemic shock (fixed-pressure hemorrhage [Hem]) followed by septic cecal ligation and puncture (CLP) insult (Hem/CLP). Mice were hemorrhaged and resuscitated; 24 h after Hem, mice were then subjected to CLP. Overall, PAD4 deletion led to an improved survival as compared with wild-type mice. PAD4-/- mice displayed a marked decrease in neutrophil influx into the lung, as well decreased presence of proinflammatory mediators. PAD4-/- mice were also able to maintain baseline kidney function after Hem/CLP. These data taken together suggest PAD4-mediated NET formation contributes to the mortality associated with shock/sepsis and may play a role in the pathobiology of end organ injury in response to combined hemorrhage plus sepsis.


Assuntos
Hidrolases/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Sepse/metabolismo , Choque Hemorrágico/metabolismo , Animais , Cromatina/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/patologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/patologia , Choque Hemorrágico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA