Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.542
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 25(4): 252-269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093099

RESUMO

Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.


Assuntos
Junções Aderentes , Caderinas , Junções Aderentes/metabolismo , Caderinas/metabolismo , Comunicação Celular , Morfogênese , Desenvolvimento Embrionário , Adesão Celular/fisiologia
3.
Nat Rev Mol Cell Biol ; 17(2): 97-109, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26726037

RESUMO

Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.


Assuntos
Comunicação Celular , Movimento Celular , Proteínas da Matriz Extracelular/genética , Morfogênese/genética , Invasividade Neoplásica/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Polaridade Celular , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Cicatrização/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864272

RESUMO

Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.


Assuntos
Junções Aderentes , Proteínas de Drosophila , Desenvolvimento Embrionário , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Junções Aderentes/metabolismo , Microtúbulos/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , alfa Catenina/metabolismo , Actomiosina/metabolismo , Morfogênese , Drosophila/embriologia , Forma Celular , Peptídeos e Proteínas de Sinalização Intracelular
5.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847494

RESUMO

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Assuntos
Caderinas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , beta Catenina , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia , Antígenos CD
6.
PLoS Biol ; 22(6): e3002662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870210

RESUMO

The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.


Assuntos
Epiderme , Larva , Morfogênese , Animais , Epiderme/metabolismo , Larva/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Células Epidérmicas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Epiteliais/metabolismo , Fenômenos Biomecânicos , Junções Aderentes/metabolismo , Forma Celular , Simulação por Computador , Drosophila/crescimento & desenvolvimento , Modelos Biológicos
7.
Cell ; 149(5): 1084-97, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632972

RESUMO

Neural-tube closure is a critical step of embryogenesis, and its failure causes serious birth defects. Coordination of two morphogenetic processes--convergent extension and neural-plate apical constriction--ensures the complete closure of the neural tube. We now provide evidence that planar cell polarity (PCP) signaling directly links these two processes. In the bending neural plates, we find that a PCP-regulating cadherin, Celsr1, is concentrated in adherens junctions (AJs) oriented toward the mediolateral axes of the plates. At these AJs, Celsr1 cooperates with Dishevelled, DAAM1, and the PDZ-RhoGEF to upregulate Rho kinase, causing their actomyosin-dependent contraction in a planar-polarized manner. This planar-polarized contraction promotes simultaneous apical constriction and midline convergence of neuroepithelial cells. Together our findings demonstrate that PCP signals confer anisotropic contractility on the AJs, producing cellular forces that promote the polarized bending of the neural plate.


Assuntos
Polaridade Celular , Embrião de Galinha/metabolismo , Morfogênese , Tubo Neural/metabolismo , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Camundongos , Placa Neural/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(37): e2405560121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39231206

RESUMO

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.


Assuntos
Caderinas , Movimento Celular , Receptores ErbB , Animais , Humanos , Junções Aderentes/metabolismo , Caderinas/metabolismo , Movimento Celular/fisiologia , Receptores ErbB/metabolismo , Fosforilação , Viscosidade
9.
Proc Natl Acad Sci U S A ; 121(9): e2316722121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377188

RESUMO

Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.


Assuntos
Actinas , Junções Aderentes , Humanos , Junções Aderentes/metabolismo , Actinas/metabolismo , Células CACO-2 , Caderinas/genética , Caderinas/metabolismo , Junções Intercelulares/metabolismo , Junções Íntimas/metabolismo , Cateninas/metabolismo , Células Epiteliais/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(40): e2321928121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331407

RESUMO

Convergent extension of epithelial tissue is a key motif of animal morphogenesis. On a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells adhere to each other and maintain the tissue layer under actively generated internal tension. To resolve this apparent paradox, we formulate a model in which tissue flow in the tension-dominated regime occurs through adiabatic remodeling of force balance in the network of adherens junctions. We propose that the slow dynamics within the manifold of force-balanced configurations is driven by positive feedback on myosin-generated cytoskeletal tension. Shifting force balance within a tension network causes active cell rearrangements (T1 transitions) resulting in net tissue deformation oriented by initial tension anisotropy. Strikingly, we find that the total extent of tissue deformation depends on the initial cellular packing order. T1s degrade this order so that tissue flow is self-limiting. We explain these findings by showing that coordination of T1s depends on coherence in local tension configurations, quantified by a geometric order parameter in tension space. Our model reproduces the salient tissue- and cell-scale features of germ band elongation during Drosophila gastrulation, in particular the slowdown of tissue flow after approximately twofold elongation concomitant with a loss of order in tension configurations. This suggests local cell geometry contains morphogenetic information and yields experimentally testable predictions. Defining biologically controlled active tension dynamics on the manifold of force-balanced states may provide a general approach to the description of morphogenetic flow.


Assuntos
Modelos Biológicos , Animais , Células Epiteliais/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Morfogênese/fisiologia , Epitélio/fisiologia , Epitélio/metabolismo , Gastrulação/fisiologia , Drosophila/fisiologia , Junções Aderentes/metabolismo , Junções Aderentes/fisiologia , Drosophila melanogaster , Fenômenos Biomecânicos , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Miosinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(37): e2400654121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236238

RESUMO

The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanotransdução Celular , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Animais , Caenorhabditis elegans/metabolismo , Mecanotransdução Celular/fisiologia , Imagem Individual de Molécula , Ligação Proteica , Caderinas/metabolismo , Caderinas/química , Caderinas/genética , Junções Aderentes/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Proteínas do Citoesqueleto , alfa Catenina
12.
Proc Natl Acad Sci U S A ; 121(39): e2408459121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39298480

RESUMO

We report a neutron spin echo (NSE) study of the nanoscale dynamics of the cell-cell adhesion cadherin-catenin complex bound to vinculin. Our measurements and theoretical physics analyses of the NSE data reveal that the dynamics of full-length α-catenin, ß-catenin, and vinculin residing in the cadherin-catenin-vinculin complex become activated, involving nanoscale motions in this complex. The cadherin-catenin complex is the central component of the cell-cell adherens junction (AJ) and is fundamental to embryogenesis, tissue wound healing, neuronal plasticity, cancer metastasis, and cardiovascular health and disease. A highly dynamic cadherin-catenin-vinculin complex provides the molecular dynamics basis for the flexibility and elasticity that are necessary for the AJs to function as force transducers. Our theoretical physics analysis provides a way to elucidate these driving nanoscale motions within the complex without requiring large-scale numerical simulations, providing insights not accessible by other techniques. We propose a three-way "motorman" entropic spring model for the dynamic cadherin-catenin-vinculin complex, which allows the complex to function as a flexible and elastic force transducer.


Assuntos
Caderinas , Vinculina , Vinculina/metabolismo , Vinculina/química , Caderinas/metabolismo , Caderinas/química , alfa Catenina/metabolismo , alfa Catenina/química , Humanos , beta Catenina/metabolismo , beta Catenina/química , Ligação Proteica , Junções Aderentes/metabolismo , Nêutrons , Simulação de Dinâmica Molecular , Análise Espectral/métodos , Animais , Cateninas/metabolismo , Adesão Celular/fisiologia
13.
J Cell Sci ; 137(6)2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38323935

RESUMO

Robust linkage between adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The Drosophila multidomain protein Canoe and its mammalian homolog afadin are crucial for this, as in their absence many events of morphogenesis fail. To define the mechanism of action for Canoe, we are taking it apart. Canoe has five folded protein domains and a long intrinsically disordered region. The largest is the Dilute domain, which is shared by Canoe and myosin V. To define the roles of this domain in Canoe, we combined biochemical, genetic and cell biological assays. AlphaFold was used to predict its structure, providing similarities and contrasts with Myosin V. Biochemical data suggested one potential shared function - the ability to dimerize. We generated Canoe mutants with the Dilute domain deleted (CnoΔDIL). Surprisingly, they were viable and fertile. CnoΔDIL localized to adherens junctions and was enriched at junctions under tension. However, when its dose was reduced, CnoΔDIL did not provide fully wild-type function. Furthermore, canoeΔDIL mutants had defects in the orchestrated cell rearrangements of eye development. This reveals the robustness of junction-cytoskeletal connections during morphogenesis and highlights the power of natural selection to maintain protein structure.


Assuntos
Proteínas de Drosophila , Miosina Tipo V , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Miosina Tipo V/metabolismo , Citoesqueleto/metabolismo , Junções Intercelulares/metabolismo , Junções Aderentes/metabolismo , Morfogênese , Caderinas/metabolismo , Mamíferos/metabolismo
14.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013686

RESUMO

Paracingulin (CGNL1) is recruited to tight junctions (TJs) by ZO-1 and to adherens junctions (AJs) by PLEKHA7. PLEKHA7 has been reported to bind to the microtubule minus-end-binding protein CAMSAP3, to tether microtubules to the AJs. Here, we show that knockout (KO) of CGNL1, but not of PLEKHA7, results in the loss of junctional CAMSAP3 and its redistribution into a cytoplasmic pool both in cultured epithelial cells in vitro and mouse intestinal epithelium in vivo. In agreement, GST pulldown analyses show that CGNL1, but not PLEKHA7, interacts strongly with CAMSAP3, and the interaction is mediated by their respective coiled-coil regions. Ultrastructure expansion microscopy shows that CAMSAP3-capped microtubules are tethered to junctions by the ZO-1-associated pool of CGNL1. The KO of CGNL1 results in disorganized cytoplasmic microtubules and irregular nuclei alignment in mouse intestinal epithelial cells, altered cyst morphogenesis in cultured kidney epithelial cells, and disrupted planar apical microtubules in mammary epithelial cells. Together, these results uncover new functions of CGNL1 in recruiting CAMSAP3 to junctions and regulating microtubule cytoskeleton organization and epithelial cell architecture.


Assuntos
Microtúbulos , Junções Íntimas , Animais , Camundongos , Junções Aderentes/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Junções Íntimas/metabolismo
15.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519286

RESUMO

Here, we show that, in the developing spinal cord, after the early Wnt-mediated Tcf transcription activation that confers dorsal identity to neural stem cells, neurogenesis redirects ß-catenin from the adherens junctions to the nucleus to stimulate Tcf-dependent transcription in a Wnt-independent manner. This new ß-catenin activity regulates genes implicated in several aspects of contralateral axon growth, including axon guidance and adhesion. Using live imaging of ex-vivo chick neural tube, we showed that the nuclear accumulation of ß-catenin and the rise in Tcf-dependent transcription both initiate before the dismantling of the adherens junctions and remain during the axon elongation process. Notably, we demonstrated that ß-catenin activity in post-mitotic cells depends on TCF7L2 and is central to spinal commissural axon growth. Together, our results reveal Wnt-independent Tcf/ß-catenin regulation of genes that control the growth and guidance of commissural axons in chick spinal cord.


Assuntos
Células-Tronco Neurais , beta Catenina , beta Catenina/metabolismo , Junções Aderentes/metabolismo , Transdução de Sinais/fisiologia , Neurogênese/genética
16.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787089

RESUMO

BMP signaling is crucial to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here, we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo. At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. Mechanistically, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial cell junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a 'Goldilocks' pathway in vascular biology that requires a certain signaling amplitude, regulated by SMAD6, to function properly.


Assuntos
Junções Aderentes , Células Endoteliais , Humanos , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Hemorragia/metabolismo , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Smad6/metabolismo
17.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628974

RESUMO

Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Junções Aderentes/metabolismo , Caderinas/genética , Caderinas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Junções Intercelulares/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
18.
Nature ; 584(7820): 268-273, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32728211

RESUMO

The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.


Assuntos
Mecanotransdução Celular/fisiologia , Análise de Célula Única , Pele/citologia , Pele/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/genética , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , RNA Mensageiro/genética , RNA-Seq , Pele/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas de Sinalização YAP
19.
EMBO J ; 40(2): e104712, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346378

RESUMO

Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule-associated proteins in the AJC-enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ-, but not at AJ-, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ-associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule-facilitated manner. Our results uncovered a hitherto unknown microtubule-LUZP1 association at TJ-associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Microtúbulos/metabolismo , Junções Íntimas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Galinhas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miosinas/metabolismo , Células Sf9
20.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37132654

RESUMO

Collective cell migration is the coordinated movement of multiple cells connected by cadherin-based adherens junctions and is essential for physiological and pathological processes. Cadherins undergo dynamic intracellular trafficking, and their surface level is determined by a balance between endocytosis, recycling and degradation. However, the regulatory mechanism of cadherin turnover in collective cell migration remains elusive. In this study, we show that the Bin/amphiphysin/Rvs (BAR) domain protein pacsin 2 (protein kinase C and casein kinase substrate in neurons protein 2) plays an essential role in collective cell migration by regulating N-cadherin (also known as CDH2) endocytosis in human cancer cells. Pacsin 2-depleted cells formed cell-cell contacts enriched with N-cadherin and migrated in a directed manner. Furthermore, pacsin 2-depleted cells showed attenuated internalization of N-cadherin from the cell surface. Interestingly, GST pull-down assays demonstrated that the pacsin 2 SH3 domain binds to the cytoplasmic region of N-cadherin, and expression of an N-cadherin mutant defective in binding to pacsin 2 phenocopied pacsin 2 RNAi cells both in cell contact formation and N-cadherin endocytosis. These data support new insights into a novel endocytic route of N-cadherin in collective cell migration, highlighting pacsin 2 as a possible therapeutic target for cancer metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Caderinas , Neoplasias , Humanos , Junções Aderentes/metabolismo , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Endocitose/fisiologia , Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA