Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2412165121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39392666

RESUMO

Lepidopterans commonly feed on plant material, being the most significant insect herbivores in nature. Despite plant resistance to herbivory, such as producing toxic secondary metabolites, herbivores have developed mechanisms encoded in their genomes to tolerate or detoxify plant defensive compounds. Recent studies also highlight the role of gut microbiota in mediating detoxification in herbivores; however, convincing evidence supporting the significant contribution of gut symbionts is rare in Lepidoptera. Here, we show that the growth of various lepidopteran species was inhibited by a mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ); as expected, the specialist silkworm Bombyx mori grew well, but interestingly, gut microbiota of early-instar silkworms was affected by the DNJ level, and several bacterial species responded positively to enriched DNJ. Among these, a bacterial strain isolated from the silkworm gut (Pseudomonas fulva ZJU1) can degrade and utilize DNJ as the sole energy source, and after inoculation into nonspecialists (e.g., beet armyworm Spodoptera exigua), P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth. We used genomic and transcriptomic analyses to identify genes potentially involved in DNJ degradation, and CRISPR-Cas9-mediated mutagenesis verified the function of ilvB, a key binding protein, in metabolizing DNJ. Furthermore, the ilvB deletion mutant, exhibiting normal bacterial growth, could no longer enhance nonspecialist performance, supporting a role in DNJ degradation in vivo. Therefore, our study demonstrated causality between the gut microbiome and detoxification of plant chemical defense in Lepidoptera, facilitating a mechanistic understanding of host-microbe relationships across this complex, abundant insect group.


Assuntos
Microbioma Gastrointestinal , Herbivoria , Animais , Microbioma Gastrointestinal/fisiologia , Bombyx/metabolismo , Bombyx/microbiologia , Morus , Simbiose , Lepidópteros/microbiologia , Spodoptera/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Digestão
2.
J Virol ; 98(6): e0027224, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38771043

RESUMO

Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Klebsiella oxytoca , Klebsiella pneumoniae , Lepidópteros , Terapia por Fagos , Animais , Bacteriófagos/patogenicidade , Bacteriófagos/fisiologia , Modelos Animais de Doenças , Técnicas In Vitro , Infecções por Klebsiella/terapia , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/virologia , Klebsiella pneumoniae/virologia , Larva/microbiologia , Larva/virologia , Lepidópteros/microbiologia , Lepidópteros/virologia , Viabilidade Microbiana , Mariposas/microbiologia , Mariposas/virologia , Terapia por Fagos/efeitos adversos , Terapia por Fagos/métodos , Profilaxia Pré-Exposição , Análise de Sobrevida
3.
BMC Microbiol ; 24(1): 319, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223450

RESUMO

BACKGROUND: Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide a barrier to gene flow between these parasitoid host lineages. RESULTS: The symbiotic microbes Arsenophonus, Cardinium, Microsporidium and Spiroplasma were not detected in the Cotesia wasps. However, the endosymbiotic bacterium Wolbachia was present in at least eight Cotesia species, and hence we concentrated on it upon screening additional DNA extracts and SRAs from NCBI. Some of the closely related Cotesia species carry similar Wolbachia strains, but most Wolbachia strains showed patterns of horizontal transfer between phylogenetically distant host lineages. CONCLUSIONS: The lack of co-phylogenetic signal between Wolbachia and Cotesia suggests that the symbiont and hosts have not coevolved to an extent that would drive species divergence between the Cotesia host lineages. However, as the most common facultative symbiont of Cotesia species, Wolbachia may still function as a key-player in the biology of the parasitoid wasps. Its precise role in the evolution of this complex clade of cryptic species remains to be experimentally investigated.


Assuntos
Filogenia , Simbiose , Vespas , Wolbachia , Animais , Wolbachia/genética , Wolbachia/classificação , Wolbachia/isolamento & purificação , Vespas/microbiologia , Simpatria , Transferência Genética Horizontal , Variação Genética , Lepidópteros/microbiologia , Lepidópteros/parasitologia
4.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767707

RESUMO

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Assuntos
Proteínas do Sistema Complemento , Modelos Animais de Doenças , Lipopolissacarídeos , Antígenos O , Salmonella enteritidis , Salmonella enteritidis/imunologia , Salmonella enteritidis/patogenicidade , Animais , Antígenos O/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Lipopolissacarídeos/imunologia , Evasão da Resposta Imune , Viabilidade Microbiana , Mariposas/microbiologia , Mariposas/imunologia , Virulência , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Ativação do Complemento , Lepidópteros/imunologia , Lepidópteros/microbiologia
5.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456705

RESUMO

Dioryctria abietella Denis Schiffermuller (Lepidoptera: Pyralidae) is an oligophagous pest that mainly damages Pinaceae plants. Here, we investigated the effects of the Bacillus thuringiensis 2913 strain (Bt 2913), which carries the Cry1Ac, Cry2Ab, and Vip3Aa genes, on the D. abietella midgut transcriptome at 6, 12, and 24 h after infection. In total, 7497 differentially expressed genes (DEGs) were identified from the midgut transcriptome of D. abietella larvae infected with Bt 2913. Among these DEGs, we identified genes possibly involved in Bt 2913-induced perforation of the larval midgut. For example, the DEGs included 67 genes encoding midgut proteases involved in Cry/Vip toxin activation, 74 genes encoding potential receptor proteins that bind to insecticidal proteins, and 19 genes encoding receptor NADH dehydrogenases that may bind to Cry1Ac. Among the three transcriptomes, 88 genes related to metabolic detoxification and 98 genes related to immune defense against Bt 2913 infection were identified. Interestingly, 145 genes related to the 60S ribosomal protein were among the DEGs identified in the three transcriptomes. Furthermore, we performed bioinformatic analysis of zonadhesin, GST, CYP450, and CarE in the D. abietella midgut to determine their possible associations with Bt 2913. On the basis of the results of this analysis, we speculated that trypsin and other serine proteases in the D. abietella larval midgut began to activate Cry/Vip prototoxin at 6 h to 12 h after Bt 2913 ingestion. At 12 h after Bt 2913 ingestion, chymotrypsin was potentially involved in degrading the active core fragment of Vip3Aa toxin, and the detoxification enzymes in the larvae contributed to the metabolic detoxification of the Bt toxin. The ABC transporter and several other receptor-protein-related genes were also downregulated to increase resistance to Bt 2913. However, the upregulation of 60S ribosomal protein and heat shock protein expression weakened the resistance of larvae to Bt 2913, thereby enhancing the expression of NADH dehydrogenase and other receptor proteins that are highly expressed in the larval midgut and bind to activating toxins, including Cry1Ac. At 24 h after Bt 2913 ingestion, many activated toxins were bound to receptor proteins such as APN in the larval midgut, resulting in membrane perforation. Here, we clarified the mechanism of Bt 2913 infection in D. abietella larvae, as well as the larval immune defense response to Bt 2913, which provides a theoretical basis for the subsequent control of D. abietella using B. thuringiensis.


Assuntos
Bacillus thuringiensis , Perfilação da Expressão Gênica , Larva , Transcriptoma , Animais , Larva/metabolismo , Bacillus thuringiensis/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Mariposas/genética , Mariposas/microbiologia , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Lepidópteros/microbiologia , Lepidópteros/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Endotoxinas
6.
Nat Chem Biol ; 16(2): 143-149, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768032

RESUMO

Staphylococcus aureus is the leading cause of infections worldwide, and methicillin-resistant strains (MRSA) are emerging. New strategies are urgently needed to overcome this threat. Using a cell-based screen of ~45,000 diverse synthetic compounds, we discovered a potent bioactive, MAC-545496, that reverses ß-lactam resistance in the community-acquired MRSA USA300 strain. MAC-545496 could also serve as an antivirulence agent alone; it attenuates MRSA virulence in Galleria mellonella larvae. MAC-545496 inhibits biofilm formation and abrogates intracellular survival in macrophages. Mechanistic characterization revealed MAC-545496 to be a nanomolar inhibitor of GraR, a regulator that responds to cell-envelope stress and is an important virulence factor and determinant of antibiotic resistance. The small molecule discovered herein is an inhibitor of GraR function. MAC-545496 has value as a research tool to probe the GraXRS regulatory system and as an antibacterial lead series of a mechanism to combat drug-resistant Staphylococcal infections.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Larva/microbiologia , Lepidópteros/microbiologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/antagonistas & inibidores
7.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563592

RESUMO

The food flavour additive octanoic acid (C8:0) is also a metabolite of the entomopathogenic fungus Conidiobolus coronatus, which efficiently infects and rapidly kills Galleria mellonella. GC-MS analysis confirmed the presence of C8:0 in insecticidal fraction FR3 extracted from C. coronatus filtrate. Topical administration of C8:0 had a dose-dependent effect on survival rates of larvae but not on pupation or adult eclosion times of the survivors. Topically applied C8:0 was more toxic to adults than larvae (LD100 for adults 18.33 ± 2.49 vs. 33.56 ± 2.57 µg/mg of body mass for larvae). The administration of C8:0 on the cuticle of larvae and adults, in amounts corresponding to their LD50 and LD100 doses, had a considerable impact on the two main defense systems engaged in protecting against pathogens, causing serious changes in the developmental-stage-specific profiles of free fatty acids (FFAs) covering the cuticle of larvae and adults and damaging larval hemocytes. In vitro cultures of G. mellonella hemocytes, either directly treated with C8:0 or taken from C8:0 treated larvae, revealed deformation of hemocytes, disordered networking, late apoptosis, and necrosis, as well as caspase 1-9 activation and elevation of 8-OHdG level. C8:0 was also confirmed to have a cytotoxic effect on the SF-9 insect cell line, as determined by WST-1 and LDH tests.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Antifúngicos/farmacologia , Caprilatos/farmacologia , Conidiobolus , Hemócitos/metabolismo , Inseticidas/metabolismo , Inseticidas/farmacologia , Larva/metabolismo , Lepidópteros/microbiologia , Mariposas/microbiologia
8.
PLoS Comput Biol ; 16(8): e1008037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745111

RESUMO

Mass production and use of antibiotics has led to the rise of resistant bacteria, a problem possibly exacerbated by inappropriate and non-optimal application. Antibiotic treatment often follows fixed-dose regimens, with a standard dose of antibiotic administered equally spaced in time. But are such fixed-dose regimens optimal or can alternative regimens be designed to increase efficacy? Yet, few mathematical models have aimed to identify optimal treatments based on biological data of infections inside a living host. In addition, assumptions to make the mathematical models analytically tractable limit the search space of possible treatment regimens (e.g. to fixed-dose treatments). Here, we aimed to address these limitations by using experiments in a Galleria mellonella (insect) model of bacterial infection to create a fully parametrised mathematical model of a systemic Vibrio infection. We successfully validated this model with biological experiments, including treatments unseen by the mathematical model. Then, by applying artificial intelligence, this model was used to determine optimal antibiotic dosage regimens to treat the host to maximise survival while minimising total antibiotic used. As expected, host survival increased as total quantity of antibiotic applied during the course of treatment increased. However, many of the optimal regimens tended to follow a large initial 'loading' dose followed by doses of incremental reductions in antibiotic quantity (dose 'tapering'). Moreover, application of the entire antibiotic in a single dose at the start of treatment was never optimal, except when the total quantity of antibiotic was very low. Importantly, the range of optimal regimens identified was broad enough to allow the antibiotic prescriber to choose a regimen based on additional criteria or preferences. Our findings demonstrate the utility of an insect host to model antibiotic therapies in vivo and the approach lays a foundation for future regimen optimisation for patient and societal benefits.


Assuntos
Antibacterianos/uso terapêutico , Lepidópteros/microbiologia , Vibrioses/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Modelos Teóricos
9.
Biotechnol Lett ; 43(9): 1845-1867, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34165641

RESUMO

OBJECTIVE: Mouse infection models are frequently used to study the host-pathogen interaction studies. However, due to several constraints, there is an urgent need for a simple, rapid, easy to handle, inexpensive, and ethically acceptable in vivo model system for studying the virulence of enteropathogens. Thus, the present study was performed to develop the larvae of Helicoverpa armigera as a rapid-inexpensive in vivo model system to evaluate the effect of Yersinia enterocolitica strain 8081 on its midgut via a label-free proteomic approach. RESULTS: Helicoverpa armigera larvae fed with Yersinia enterocolitica strain 8081 manifested significant reduction in body weight and damage in midgut. On performing label-free proteomic study, secretory systems, putative hemolysin, and two-component system emerged as the main pathogenic proteins. Further, proteome comparison between control and Yersinia added diet-fed (YADF) insects revealed altered cytoskeletal proteins in response to increased melanization (via a prophenoloxidase cascade) and free radical generation. In concurrence, FTIR-spectroscopy, and histopathological and biochemical analysis confirmed gut damage in YADF insects. Finally, the proteome data suggests that the mechanism of infection and the host response in Y. enterocolitica-H. armigera system mimics Yersinia-mammalian gut interactions. CONCLUSIONS: All data from current study collectively suggest that H. armigera larva can be considered as a potential in vivo model system for studying the enteropathogenic infection by Y. enterocolitica strain 8081.


Assuntos
Lepidópteros/microbiologia , Mapas de Interação de Proteínas , Yersiniose/metabolismo , Yersinia enterocolitica/patogenicidade , Animais , Peso Corporal , Modelos Animais de Doenças , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Larva/microbiologia , Proteômica , Espectroscopia de Infravermelho com Transformada de Fourier , Yersiniose/microbiologia
10.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202141

RESUMO

Intestinal symbiotic bacteria have played an important role in the digestion, immunity detoxification, mating, and reproduction of insects during long-term coevolution. The oriental fruit moth, Grapholita molesta, is an important fruit tree pest worldwide. However, the composition of the G. molesta microbial community, especially of the gut microbiome, remains unclear. To explore the differences of gut microbiota of G. molesta when reared on different host plants, we determined the gut bacterial structure when G. molesta was transferred from an artificial diet to different host plants (apples, peaches, nectarines, crisp pears, plums, peach shoots) by amplicon sequencing technology. The results showed that Proteobacteria and Firmicutes are dominant in the gut microbiota of G. molesta. Plum-feeding G. molesta had the highest richness and diversity of gut microbiota, while apple-feeding G. molesta had the lowest. PCoA and PERMANOVA analysis revealed that there were significant differences in the gut microbiota structure of G. molesta on different diets. PICRUSt2 analysis indicated that most of the functional prediction pathways were concentrated in metabolic and cellular processes. Our results confirmed that gut bacterial communities of G. molesta can be influenced by host diets and may play an important role in host adaptation.


Assuntos
Microbioma Gastrointestinal , Lepidópteros/microbiologia , Análise de Variância , Animais , Biologia Computacional/métodos , Interações Hospedeiro-Parasita , Metagenômica/métodos , Plantas/parasitologia , RNA Ribossômico 16S/genética
11.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805570

RESUMO

Corynebacterium silvaticum is a newly identified animal pathogen of forest animals such as roe deer and wild boars. The species is closely related to the emerging human pathogen Corynebacterium ulcerans and the widely distributed animal pathogen Corynebacterium pseudotuberculosis. In this study, Corynebacterium silvaticum strain W25 was characterized with respect to its interaction with human cell lines. Microscopy, measurement of transepithelial electric resistance and cytotoxicity assays revealed detrimental effects of C. silvaticum to different human epithelial cell lines and to an invertebrate animal model, Galleria mellonella larvae, comparable to diphtheria toxin-secreting C. ulcerans. Furthermore, the results obtained may indicate a considerable zoonotic potential of this newly identified species.


Assuntos
Corynebacterium/patogenicidade , Células Epiteliais/microbiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Corynebacterium/genética , Corynebacterium/isolamento & purificação , Infecções por Corynebacterium/microbiologia , Impedância Elétrica , Proteínas de Fluorescência Verde/genética , Células HeLa/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Larva/microbiologia , Lepidópteros/microbiologia , Receptor 2 Toll-Like/metabolismo , Células Vero/microbiologia , Virulência
12.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360963

RESUMO

The insect immune response is initiated by the recognition of invading microorganisms. Peptidoglycan recognition proteins (PGRPs) function primarily as pattern recognition receptors by specifically binding to peptidoglycans expressed on microbial surfaces. We cloned a full-length cDNA for a PGRP from the Asian corn borer Ostrinia furnacalis (Guenée) and designated it as PGRP1. PGRP1 mRNA was mainly detected in the fat bodies and hemocytes. Its transcript levels increased significantly upon bacterial and fungal challenges. Purified recombinant PGRP1 exhibited binding activity to the gram-positive Micrococcus luteus, gram-negative Escherichia coli, entomopathogenic fungi Beauveria bassiana, and yeast Pichia pastoris. The binding further induced their agglutination. Additionally, PGRP1 preferred to bind to Lys-type peptidoglycans rather than DAP-type peptidoglycans. The addition of recombinant PGRP1 to O. furnacalis plasma resulted in a significant increase in phenoloxidase activity. The injection of recombinant PGRP1 into larvae led to a significantly increased expression of several antimicrobial peptide genes. Taken together, our results suggest that O. furnacalis PGRP1 potentially recognizes the invading microbes and is involved in the immune response in O. furnacalis.


Assuntos
Imunidade Inata , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Peptidoglicano/metabolismo , Animais , Beauveria/patogenicidade , Corpo Adiposo/metabolismo , Hemócitos/metabolismo , Proteínas de Insetos/genética , Lepidópteros/imunologia , Lepidópteros/microbiologia , Micrococcus luteus/patogenicidade , Monofenol Mono-Oxigenase/metabolismo , Peptidoglicano/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Saccharomycetales/patogenicidade
13.
World J Microbiol Biotechnol ; 37(9): 154, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398297

RESUMO

Bacillus thuringiensis (Bt) (Bacillales:Bacillaceae) is a gram-positive bacterium that produces spores, several virulence factors and insecticidal toxins, making this microorganism the most used biopesticide worldwide. The use of inert supports such as polyurethane foam (PUF) in solid cultures has been a great alternative to produce various metabolites, including those produced by Bt. In this study we compared the yields, productivity and quality of the spores by two wild strains of Bt, (Y15 and EA3), grown in media with high substrate concentration in both culture systems: liquid and solid (PUF as solid inert support). Both strains showed 2.5- to 30-fold increases in spore production and productivity in solid culture, which showed an even greater increase when considering the spores retained in the PUF observed by scanning electron microscopy. Moreover, spore produced in solid culture showed up to sevenfold higher survival after a heat-shock treatment, relative to spores from liquid culture. The infectivity against larvae of Galleria mellonella (Lepidoptera:Pyralidae) improved also in spores from solid cultures. This comparison showed that the culture of Bt on solid support has clear advantages over liquid culture in terms of the production and quality of spores, and that those advantages can be attributed only to the culture system, as the same media composition was used in both systems.


Assuntos
Bacillus thuringiensis/fisiologia , Poliuretanos/química , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/patogenicidade , Técnicas Bacteriológicas , Meios de Cultura/química , Larva/microbiologia , Lepidópteros/microbiologia , Microscopia Eletrônica de Varredura
14.
BMC Microbiol ; 20(1): 36, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070273

RESUMO

BACKGROUND: Klebsiella pneumoniae is considered the most clinically relevant species of Enterobacteriaceae, known to cause severe infections including liver abscesses. To the best of our knowledge, a large proportion of iron in the human body is accumulated and stored in the liver. We hypothesize that increased iron availability is an important factor driving liver abscess formation and we therefore aim to understand the effects of iron on K. pneumoniae causing liver abscesses. RESULTS: All tested K. pneumoniae clinical isolates, including those isolated from liver abscesses and other abdominal invasive infection sites, grew optimally when cultured in LB broth supplemented with 50 µM iron and exhibited the strongest biofilm formation ability under those conditions. Decreased growth and biofilm formation ability were observed in all tested strains when cultured with an iron chelator (P < 0.05). The infection model of G. mellonella larvae indicated the virulence of liver abscess-causing K. pneumoniae (2/3) cultured in LB broth with additional iron was significantly higher than those under iron-restricted conditions (P < 0.05). The relative expression levels of the four siderophore genes (iucB, iroB, irp1, entB) in K. pneumoniae strains isolated from liver abscesses cultured with additional iron were lower than those under iron-restricted conditions (P < 0.05). CONCLUSIONS: It is suggested by our research that iron in the environment can promote growth, biofilm formation and enhance virulence of K. pneumoniae causing liver abscesses. A lower expression of siderophore genes correlates with increased virulence of liver abscess-causing K. pneumoniae. Further deeper evaluation of these phenomena is warranted.


Assuntos
Biofilmes/crescimento & desenvolvimento , Ferro/farmacologia , Klebsiella pneumoniae/patogenicidade , Abscesso Hepático/microbiologia , Animais , Biofilmes/efeitos dos fármacos , Meios de Cultura/química , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Quelantes de Ferro/efeitos adversos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Lepidópteros/microbiologia , Abscesso Hepático/metabolismo , Virulência/efeitos dos fármacos , Fatores de Virulência/genética
15.
Cell Microbiol ; 21(1): e12971, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370624

RESUMO

Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.


Assuntos
Amoeba/metabolismo , Amoeba/microbiologia , Evasão da Resposta Imune , Imunidade Inata , Legionella pneumophila/fisiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Drosophila/imunologia , Drosophila/microbiologia , Lepidópteros/imunologia , Lepidópteros/microbiologia
16.
Cell Microbiol ; 21(12): e13100, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418513

RESUMO

Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+ , Zn2+ , Fe2+ , and Mg2+ ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana.


Assuntos
Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Domínios Proteicos/fisiologia , Estresse Fisiológico/fisiologia , Animais , Membrana Celular/metabolismo , Parede Celular/metabolismo , Sinais (Psicologia) , Deleção de Genes , Insetos/microbiologia , Lepidópteros/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Vacúolos/metabolismo , Vacúolos/microbiologia , Virulência/fisiologia
17.
Cell Microbiol ; 21(10): e13066, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173452

RESUMO

Free-living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose-binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose-binding proteins, Ac-fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.


Assuntos
Acanthamoeba castellanii/metabolismo , Fungos/patogenicidade , Lectina de Ligação a Manose/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/microbiologia , Acanthamoeba castellanii/ultraestrutura , Animais , Candida albicans/patogenicidade , Candida albicans/ultraestrutura , Concanavalina A/metabolismo , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/ultraestrutura , Histoplasma/patogenicidade , Histoplasma/ultraestrutura , Interações Hospedeiro-Patógeno , Larva/microbiologia , Lepidópteros/microbiologia , Manose/química , Manose/metabolismo , Lectina de Ligação a Manose/química , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Paracoccidioides/patogenicidade , Paracoccidioides/ultraestrutura , Saccharomyces cerevisiae/patogenicidade , Saccharomyces cerevisiae/ultraestrutura , Fatores de Tempo , Imagem com Lapso de Tempo , Virulência , Fatores de Virulência/metabolismo
18.
Med Mycol ; 58(1): 83-92, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874807

RESUMO

We aim to assess intra- and interspecies differences in the virulence of Candida spp. strains causing candidemia using the invertebrate Galleria mellonella model. We studied 739 Candida spp. isolates (C. albicans [n = 373], C. parapsilosis [n = 203], C. glabrata [n = 92], C. tropicalis [n = 53], and C. krusei [n = 18]) collected from patients with candidemia admitted to Gregorio Marañon Hospital (Madrid, Spain). Species-specific infecting inocula (yeast cells/larva) were adjusted (5 × 105 [C. albicans, and C. tropicalis], 2 × 106-5 × 106 [C. parapsilosis, C. glabrata, and C. krusei]) and used to infect 10 larvae per isolate; percentage of survival and median survival per isolate were calculated. According to the interquartile range of the median survival, isolates with a median survival under P25 were classified as of high-virulence and isolates with a median survival over P75 as of low virulence. The median survival of larvae infected with different species was variable: C. albicans (n = 2 days, IQR <1-3 days), C. tropicalis (n = 2 days, IQR 1.5-4 days), C. parapsilosis (n = 2 days, IQR 2-3.5 days), C. glabrata (n = 3 days, IQR 2-3 days), and C. krusei (n = 7 days, 6.5->8 days) (P < .001). Differences in virulence among species were validated by histological examination (day +1 post-infection) in the larvae infected by the isolates of each virulence category and species. Virulence-related gene expression in C. albicans isolates did not reach statistical significance. We report species-specific virulence patterns of Candida spp. and show that isolates within a given species have different degrees of virulence in the animal model.


Assuntos
Candida/patogenicidade , Candidemia/microbiologia , Larva/microbiologia , Animais , Biofilmes , Candida/isolamento & purificação , Candida albicans/patogenicidade , Candida glabrata/patogenicidade , Candida parapsilosis/patogenicidade , Candida tropicalis/patogenicidade , Humanos , Lepidópteros/microbiologia , Modelos Animais , Mariposas/microbiologia , Espanha , Virulência
19.
Biochem J ; 476(19): 2851-2867, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31527117

RESUMO

Coxiella burnetii is a Gram-negative bacterium which causes Q fever, a complex and life-threatening infection with both acute and chronic presentations. C. burnetii invades a variety of host cell types and replicates within a unique vacuole derived from the host cell lysosome. In order to understand how C. burnetii survives within this intracellular niche, we have investigated the carbon metabolism of both intracellular and axenically cultivated bacteria. Both bacterial populations were shown to assimilate exogenous [13C]glucose or [13C]glutamate, with concomitant labeling of intermediates in glycolysis and gluconeogenesis, and in the TCA cycle. Significantly, the two populations displayed metabolic pathway profiles reflective of the nutrient availabilities within their propagated environments. Disruption of the C. burnetii glucose transporter, CBU0265, by transposon mutagenesis led to a significant decrease in [13C]glucose utilization but did not abolish glucose usage, suggesting that C. burnetii express additional hexose transporters which may be able to compensate for the loss of CBU0265. This was supported by intracellular infection of human cells and in vivo studies in the insect model showing loss of CBU0265 had no impact on intracellular replication or virulence. Using this mutagenesis and [13C]glucose labeling approach, we identified a second glucose transporter, CBU0347, the disruption of which also showed significant decreases in 13C-label incorporation but did not impact intracellular replication or virulence. Together, these analyses indicate that C. burnetii may use multiple carbon sources in vivo and exhibits greater metabolic flexibility than expected.


Assuntos
Coxiella burnetii/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Febre Q/microbiologia , Virulência/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Transporte Biológico , Coxiella burnetii/patogenicidade , Gluconeogênese/fisiologia , Glicólise/fisiologia , Células HeLa , Humanos , Lepidópteros/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Células THP-1
20.
Proc Natl Acad Sci U S A ; 114(36): 9641-9646, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28830993

RESUMO

Many animals are inhabited by microbial symbionts that influence their hosts' development, physiology, ecological interactions, and evolutionary diversification. However, firm evidence for the existence and functional importance of resident microbiomes in larval Lepidoptera (caterpillars) is lacking, despite the fact that these insects are enormously diverse, major agricultural pests, and dominant herbivores in many ecosystems. Using 16S rRNA gene sequencing and quantitative PCR, we characterized the gut microbiomes of wild leaf-feeding caterpillars in the United States and Costa Rica, representing 124 species from 15 families. Compared with other insects and vertebrates assayed using the same methods, the microbes that we detected in caterpillar guts were unusually low-density and variable among individuals. Furthermore, the abundance and composition of leaf-associated microbes were reflected in the feces of caterpillars consuming the same plants. Thus, microbes ingested with food are present (although possibly dead or dormant) in the caterpillar gut, but host-specific, resident symbionts are largely absent. To test whether transient microbes might still contribute to feeding and development, we conducted an experiment on field-collected caterpillars of the model species Manduca sexta Antibiotic suppression of gut bacterial activity did not significantly affect caterpillar weight gain, development, or survival. The high pH, simple gut structure, and fast transit times that typify caterpillar digestive physiology may prevent microbial colonization. Moreover, host-encoded digestive and detoxification mechanisms likely render microbes unnecessary for caterpillar herbivory. Caterpillars illustrate the potential ecological and evolutionary benefits of independence from symbionts, a lifestyle that may be widespread among animals.


Assuntos
Microbioma Gastrointestinal , Lepidópteros/microbiologia , Animais , Biodiversidade , Cadeia Alimentar , Microbiologia de Alimentos , Microbioma Gastrointestinal/genética , Herbivoria , Larva/crescimento & desenvolvimento , Larva/microbiologia , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/fisiologia , Manduca/crescimento & desenvolvimento , Manduca/microbiologia , Manduca/fisiologia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA