Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279051

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Camundongos , Animais , Hiperplasia/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Proliferação de Células , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Fatores de Transcrição/metabolismo , Fenótipo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Movimento Celular
2.
J Mol Cell Cardiol ; 192: 13-25, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653384

RESUMO

The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-ß, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.


Assuntos
Fator 1 de Resposta a Butirato , Proliferação de Células , Fatores de Transcrição Kruppel-Like , Músculo Liso Vascular , Lesões do Sistema Vascular , Animais , Humanos , Masculino , Ratos , Fator 1 de Resposta a Butirato/metabolismo , Fator 1 de Resposta a Butirato/genética , Movimento Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
3.
Apoptosis ; 29(7-8): 1007-1018, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38649508

RESUMO

Ischemic vascular diseases are on the rise globally, including ischemic heart diseases, ischemic cerebrovascular diseases, and ischemic peripheral arterial diseases, posing a significant threat to life. Copper is an essential element in various biological processes, copper deficiency can reduce blood vessel elasticity and increase platelet aggregation, thereby increasing the risk of ischemic vascular disease; however, excess copper ions can lead to cytotoxicity, trigger cell death, and ultimately result in vascular injury through several signaling pathways. Herein, we review the role of cuproptosis and copper deficiency implicated in ischemic injury and repair including myocardial, cerebral, and limb ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of copper biology in understanding the pathogenesis of ischemic vascular disease states.


Assuntos
Cobre , Isquemia , Cobre/metabolismo , Cobre/deficiência , Humanos , Animais , Isquemia/metabolismo , Isquemia/genética , Isquemia/patologia , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Transdução de Sinais
4.
J Vasc Res ; 61(3): 99-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151007

RESUMO

INTRODUCTION: This study aimed to determine whether bone morphogenetic protein-4 (BMP-4), which increases in response to intimal hyperplasia, promotes phenotype transition in vascular smooth muscle cells (VSMCs). METHODS: Balloon injury was used to induce intimal hyperplasia in rats. Hematoxylin-eosin staining was used to detect the alteration of vascular structure. Serum levels of BMP-4 and lactate were detected by ELISA. Human aortic smooth muscle cells (HA-SMCs) were cultured. Protein and mRNA expression levels were detected through Western blot and real-time PCR. Cell migration was measured by transwell assay. RESULTS: Our data showed that serum concentration of BMP-4 was upregulated after balloon injury. Treatment with BMP-4 inhibitor DMH1 (4-(6-(4-isopropoxyphenyl)pyrazolo(1,5-a)pyrimidin-3-yl)quinoline) suppressed the abnormal expression of BMP-4 and inhibited the intimal hyperplasia induced by balloon injury. Compared to BMP-4-negative medium, BMP-4-positive medium was associated with higher synthetic VSMC marker expression levels and lower in contractile gene markers in cultured HA-SMCs. Transfection of monocarboxylic acid transporters-4 (MCT-4) siRNA inhibited the excretion of lactate induced by BMP-4. CONCLUSION: Our analyses provided evidence that BMP-4 and its regulator Smad-4 are key regulators in MCT-4-mediated lactate excretion. This indicates that BMP-4 stimulates the phenotypic transition of VSMCs via SMAD-4/MCT-4 signaling pathway.


Assuntos
Proteína Morfogenética Óssea 4 , Movimento Celular , Modelos Animais de Doenças , Hiperplasia , Transportadores de Ácidos Monocarboxílicos , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad4 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Masculino , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Angioplastia com Balão/efeitos adversos , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/genética , Plasticidade Celular/efeitos dos fármacos
5.
Cell Commun Signal ; 22(1): 138, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374138

RESUMO

BACKGROUND: Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT: This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION: The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.


Assuntos
Matriz Extracelular , Óxido Nítrico Sintase Tipo III , Plasma , Lesões do Sistema Vascular , Humanos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Angiogênese , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/terapia , Plasma/metabolismo
6.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172726

RESUMO

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Animais , Ratos , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibromodulina/metabolismo , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Ratos Sprague-Dawley , RNA/metabolismo , RNA de Transferência/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo
7.
Adv Sci (Weinh) ; 11(31): e2401844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884204

RESUMO

Vascular injury is central to the pathogenesis and progression of cardiovascular diseases, however, fostering alternative strategies to alleviate vascular injury remains a persisting challenge. Given the central role of cell-derived nitric oxide (NO) in modulating the endogenous repair of vascular injury, NO-generating proteolipid nanovesicles (PLV-NO) are designed that recapitulate the cell-mimicking functions for vascular repair and replacement. Specifically, the proteolipid nanovesicles (PLV) are versatilely fabricated using membrane proteins derived from different types of cells, followed by the incorporation of NO-generating nanozymes capable of catalyzing endogenous donors to produce NO. Taking two vascular injury models, two types of PLV-NO are tailored to meet the individual requirements of targeted diseases using platelet membrane proteins and endothelial membrane proteins, respectively. The platelet-based PLV-NO (pPLV-NO) demonstrates its efficacy in targeted repair of a vascular endothelium injury model through systemic delivery. On the other hand, the endothelial cell (EC)-based PLV-NO (ePLV-NO) exhibits suppression of thrombosis when modified onto a locally transplanted small-diameter vascular graft (SDVG). The versatile design of PLV-NO may enable a promising therapeutic option for various vascular injury-evoked cardiovascular diseases.


Assuntos
Óxido Nítrico , Proteolipídeos , Lesões do Sistema Vascular , Óxido Nítrico/metabolismo , Animais , Lesões do Sistema Vascular/metabolismo , Proteolipídeos/metabolismo , Modelos Animais de Doenças , Camundongos , Humanos , Nanopartículas/química , Masculino
8.
Physiol Rep ; 12(15): e16178, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39128880

RESUMO

Acute vascular injury provokes an inflammatory response, resulting in neointimal hyperplasia (NIH) and downstream pathologies. The resolution of inflammation is an active process in which specialized proresolving lipid mediators (SPM) and their receptors play a central role. We sought to examine the acute phase response of SPM and their receptors in both circulating blood and the arterial wall in a rat angioplasty model. We found that the ratio of proresolving to pro-inflammatory lipid mediators (LM) in plasma decreased sharply 1 day after vascular injury, then increased slightly by day 7, while that in arteries remained depressed. Granulocyte expression of SPM receptors ALX/FPR2 and DRV2/GPR18, and a leukotriene B4 receptor BLT1 increased postinjury, while ERV1/ChemR23 expression was reduced early and then recovered by day 7. Importantly, we show unique arterial expression patterns of SPM receptors in the acute setting, with generally low levels through day 7 that contrasted sharply with that of the pro-inflammatory CCR2 receptor. Overall, these data document acute, time-dependent changes of LM biosynthesis and SPM receptor expression in plasma, leukocytes, and artery walls following acute vascular injury. A biochemical imbalance between inflammation and resolution LM pathways appears persistent 7 days after angioplasty in this model. These findings may help guide therapeutic approaches to accelerate vascular healing and improve the outcomes of vascular interventions for patients with advanced atherosclerosis.


Assuntos
Ratos Sprague-Dawley , Animais , Masculino , Ratos , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores do Leucotrieno B4/metabolismo , Mediadores da Inflamação/metabolismo
9.
Sci Total Environ ; 912: 169515, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38154651

RESUMO

Nanoplastics pose several health hazards, especially vascular toxicity. Transfer RNA-derived small RNAs (tsRNAs) are novel noncoding RNAs associated with different pathological processes. However, their biological roles and mechanisms in aberrant vascular smooth muscle cell (VSMC) plasticity and vascular injury are unclear. This study investigated the potent effects of tsRNAs on vascular injury induced by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Mice were exposed to PS-NPs (100 nm) at different doses (10-100 µg/mL) for 30 or 180 days. High-throughput sequencing was used to analyze tsRNA expression patterns in arterial tissues obtained from an in vivo model. Additionally, quantitative real-time polymerase chain reaction, fluorescent in situ hybridization assays, and dual-luciferase reporter assays were performed to measure the expression and impact of tiRNA-Glu-CTC on VSMCs exposed to PS-NPs. Short-term (≥50 µg/mL, moderate concentration) and long-term (≥10 µg/mL, low concentration) PS-NP exposure induced vascular injury in vivo. Cellular experiments showed that the moderate concentration of PS-NPs induced VSMC phenotypic switching, whereas a high concentration of PS-NPs (100 µg/mL) promoted VSMC apoptosis. PS-NP induced severe mitochondrial damage in VSMCs, including overexpression of reactive oxygen species, accumulation of mutated mtDNA, and dysregulation of genes related to mitochondrial synthesis and division. Compared with the control group, 13 upregulated and 12 downregulated tRNA-derived stress-induced RNAs (tiRNAs) were observed in the long-term PS-NP (50 µg/mL) exposure group. Bioinformatics analysis indicated that differentially expressed tiRNAs targeted genes that were involved in vascular smooth muscle contraction and calcium signaling pathways. Interestingly, tiRNA-Glu-CTC was overexpressed in vivo and in vitro following PS-NP exposure. Functionally, the tiRNA-Glu-CTC inhibitor mitigated VSMC phenotypic switching and mitochondrial damage induced by PS-NP exposure, whereas tiRNA-Glu-CTC mimics had the opposite effect. Mechanistically, tiRNA-Glu-CTC mimics induced VSMC phenotypic switching by downregulating Cacna1f expression. PS-NP exposure promoted VSMC phenotypic switching and vascular injury by targeting the tiRNA-Glu-CTC/Cacna1f axis.


Assuntos
Lesões do Sistema Vascular , Camundongos , Animais , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Músculo Liso Vascular/metabolismo , Microplásticos/metabolismo , Hibridização in Situ Fluorescente , Proliferação de Células , RNA/metabolismo , Células Cultivadas
10.
Int J Biol Macromol ; 269(Pt 2): 131805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677673

RESUMO

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.


Assuntos
Células Endoteliais , Pulmão , Proteínas Serina-Treonina Quinases , Receptores Acoplados a Proteínas G , Regeneração , Transdução de Sinais , Trombospondinas , beta Catenina , Animais , Trombospondinas/metabolismo , Trombospondinas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , beta Catenina/metabolismo , beta Catenina/genética , Células Endoteliais/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Proliferação de Células , Masculino , Sepse/metabolismo , Inflamação/metabolismo , Inflamação/patologia
11.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278560

RESUMO

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Assuntos
Caderinas , Lesões das Artérias Carótidas , Diterpenos , Lesões do Sistema Vascular , Camundongos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Remodelação Vascular , Proliferação de Células , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Lesões das Artérias Carótidas/patologia , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Movimento Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Succinatos/metabolismo , Succinatos/farmacologia , Potássio/metabolismo , Potássio/farmacologia , Células Cultivadas
12.
J Am Heart Assoc ; 13(15): e034492, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39028040

RESUMO

BACKGROUND: Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS: Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS: We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.


Assuntos
Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Receptor 3 Toll-Like , Trombose Venosa , Animais , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/patologia , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Células HEK293 , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Neutrófilos/metabolismo , RNA/genética , Masculino , Camundongos , Poli I-C/farmacologia , Coagulação Sanguínea
13.
Cardiovasc Ther ; 2023: 8848808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125702

RESUMO

Coronary artery disease (CAD) is the most prevalent cardiovascular disease worldwide, resulting in myocardial infarction (MI) and even sudden death. Following percutaneous coronary intervention (PCI), restenosis caused by vascular remodeling is always formed at the stent implantation site. Here, we show that Ginkgolide B (GB), a naturally occurring terpene lactone, effectively suppresses vascular remodeling and subsequent restenosis in wild-type mice following left carotid artery (LCA) injury. Additional experiments reveal that GB exerts a protective effect on vascular remodeling and further restenosis through modulation of the Tgfß1/Smad signaling pathway in vivo and in human vascular smooth muscle cells (HVSMAs) but not in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, the beneficial effect of GB is abolished after incubated with pirfenidone (PFD, a drug for idiopathic pulmonary fibrosis, IPF), which can inhibit Tgfß1. In Tgfß1-/- mice, treatment with pirfenidone capsules and Yinxingneizhi Zhusheye (including Ginkgolide B) fails to improve vascular remodeling and restenosis. In conclusion, our data identify that GB could be a potential novel therapeutic agent to block vessel injury-associated vascular remodeling and further restenosis and show significant repression of Tgfß1/Smad signaling pathway.


Assuntos
Intervenção Coronária Percutânea , Lesões do Sistema Vascular , Humanos , Camundongos , Animais , Remodelação Vascular/fisiologia , Lesões do Sistema Vascular/metabolismo , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Lactonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA