RESUMO
BACKGROUND: Dynamic changes in neuronal activity and in noradrenergic locus coeruleus (LC) projections have been proposed during the transition from acute to chronic pain. Thus, the authors explored the cellular cFos activity of the LC and its projections in conjunction with spontaneous pain-like behavior in neuropathic rats. METHODS: Tyrosine hydroxylase:Cre and wild-type Long-Evans rats, males and females, were subjected to chronic constriction injury (CCI) for 2 (short-term, CCI-ST) or 30 days (long-term, CCI-LT), evaluating cFos and Fluoro-Gold expression in the LC, and its projections to the spinal cord (SC) and rostral anterior cingulate cortex (rACC). These tests were carried out under basal conditions (unstimulated) and after noxious mechanical stimulation. LC activity was evaluated through chemogenetic and pharmacologic approaches, as were its projections, in association with spontaneous pain-like behaviors. RESULTS: CCI-ST enhanced basal cFos expression in the LC and in its projection to the SC, which increased further after noxious stimulation. Similar basal activation was found in the neurons projecting to the rACC, although this was not modified by stimulation. Strong basal cFos expression was found in CCI-LT, specifically in the projection to the rACC, which was again not modified by stimulation. No cFos expression was found in the CCI-LT LCipsilateral (ipsi)/contralateral (contra)âSC. Chemogenetics showed that CCI-ST is associated with greater spontaneous pain-like behavior when the LCipsi is blocked, or by selectively blocking the LCipsiâSC projection. Activation of the LCipsi or LCipsi/contraâSC dampened pain-like behavior. Moreover, Designer Receptor Exclusively Activated by Designer Drugs (DREADDs)-mediated inactivation of the CCI-ST LCipsiârACC or CCI-LT LCipsi/contraârACC pathway, or intra-rACC antagonism of α-adrenoreceptors, also dampens pain-like behavior. CONCLUSIONS: In the short term, activation of the LC after CCI attenuates spontaneous pain-like behaviors via projections to the SC while increasing nociception via projections to the rACC. In the long term, only the projections from the LC to the rACC contribute to modulate pain-like behaviors in this model.
Assuntos
Locus Cerúleo , Ratos Long-Evans , Animais , Locus Cerúleo/fisiopatologia , Locus Cerúleo/metabolismo , Ratos , Masculino , Feminino , Comportamento Animal/fisiologia , Fatores de Tempo , Neuralgia/fisiopatologia , Neuralgia/etiologia , Neuralgia/metabolismo , Modelos Animais de DoençasRESUMO
We have previously proven the involvement of transient receptor potential ankyrin 1 (TRPA1) in stress adaptation. A lack of TRPA1 affects both urocortin 1 (member of the corticotropin-releasing hormone (CRH) family) content of the Edinger-Westphal nucleus. The noradrenergic locus ceruleus (LC) is also an important player in mood control. We aimed at investigating whether the TRPA1 is expressed in the LC, and to test if the response to chronic variable mild stress (CVMS) is affected by a lack of TRPA1. The TRPA1 expression was examined via RNAscope in situ hybridization. We investigated TRPA1 knockout and wildtype mice using the CVMS model of depression. Tyrosine hydroxylase (TH) and FOSB double immunofluorescence were used to test the functional neuromorphological changes in the LC. No TRPA1 expression was detected in the LC. The TH content was not affected by CVMS exposure. The CVMS-induced FOSB immunosignal did not co-localize with the TH neurons. TRPA1 is not expressed in the LC. A lack of functional TRPA1 receptor neither directly nor indirectly affects the TH content of LC neurons under CVMS.
Assuntos
Locus Cerúleo , Estresse Psicológico , Canal de Cátion TRPA1 , Animais , Camundongos , Hormônio Liberador da Corticotropina/metabolismo , Expressão Gênica , Locus Cerúleo/fisiopatologia , Urocortinas/metabolismo , Canal de Cátion TRPA1/genética , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
BACKGROUND: Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce. In this study, we aimed to investigate the intrinsic functional connectivity (FC) network of the LC in patients with comorbid migraine and subjective chronic insomnia and patients with migraine with no insomnia (MnI) using resting-state functional magnetic resonance imaging (rs-fMRI) and seed-based FC analyses. METHODS: In this cross-sectional study, 30 patients with comorbid migraine and chronic insomnia (MI), 30 patients with MnI, and 30 healthy controls (HCs) were enrolled. Participants underwent neuropsychological testing and rs-fMRI. The LC-FC network was constructed using seed-based voxel-wise FC analysis. To identify group differences in LC-FC networks, voxel-wise covariance analysis was conducted with sex and age as covariates. Subsequently, a partial correlation analysis was conducted to probe the clinical relevance of aberrant LC-FC in patients with MI and MnI. RESULTS: Except for the insomnia score, no other significant difference was detected in demographic characteristics and behavioral performance between the MI and MnI groups. Compared with HCs, patients with MI exhibited altered LC-FC in several brain regions, including the dorsomedial prefrontal cortex (DMPFC), anterior cerebellum, dorsolateral prefrontal cortex (DLPFC), thalamus, and parahippocampal gyrus (PHG). Lower FC between the LC and DLPFC was associated with greater insomnia severity, whereas higher FC between the LC and DMPFC was linked to longer migraine attack duration in the MI group. CONCLUSION: Our findings reveal the presence of aberrant LC-FC networks in patients with MI, providing neuroimaging evidence of the interplay between these conditions. The identified LC-FC alterations may serve as potential targets for therapeutic interventions and highlight the importance of considering the LC-noradrenergic system in the management of MI.
Assuntos
Comorbidade , Locus Cerúleo , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiopatologia , Feminino , Masculino , Adulto , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/epidemiologia , Estudos Transversais , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , ConectomaRESUMO
We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.
Assuntos
Inflamação/fisiopatologia , Locus Cerúleo/fisiopatologia , Dor/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Feminino , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Neurônios/fisiologia , Caracteres Sexuais , Memória Espacial/fisiologiaRESUMO
Autism spectrum disorder (ASD) is characterized partly by atypical attentional engagement, reflected in exaggerated and variable responses to sensory stimuli. Attentional engagement is known to be regulated by the locus ceruleus (LC). Moderate baseline LC activity globally dampens neural responsivity and is associated with adaptive deployment and narrowing of attention to task-relevant stimuli. In contrast, increased baseline LC activity enhances neural responsivity across cortex and widening of attention to environmental stimuli regardless of their task relevance. Given attentional atypicalities in ASD, this study is the first to evaluate whether, under different attentional task demands, individuals with ASD exhibit a different profile of LC activity compared with typically developing controls. Males and females with ASD and age- and gender-matched controls participated in a one-back letter detection test while task-evoked pupillary responses, an established correlate for LC activity, were recorded. Participants completed this task in two conditions, either in the absence or presence of distractor auditory tones. Compared with controls, individuals with ASD evinced atypical pupillary responses in the presence versus absence of distractors. Notably, this atypical pupillary profile was evident despite the fact that both groups exhibited equivalent task performance. Moreover, between-group differences in pupillary responses were observed specifically in response to task-relevant events, providing confirmation that the group differences most likely were specifically associated with distinctions in LC activity. These findings suggest that individuals with ASD show atypical modulation of LC activity with changes in attentional demands, offering a possible mechanistic and neurobiological account for attentional atypicalities in ASD.SIGNIFICANCE STATEMENT Individuals with autism spectrum disorder (ASD) exhibit atypical attentional behaviors, including altered sensory responses and atypical fixedness, but the neural mechanism underlying these behaviors remains elusive. One candidate mechanism is atypical locus ceruleus (LC) activity, as the LC plays a critical role in attentional modulation. Specifically, LC activity is involved in regulating the trade-off between environmental exploration and focused attention. This study shows that, under tightly controlled conditions, task-evoked pupil responses, an LC activity proxy, are lower in individuals with ASD than in controls, but only in the presence of task-irrelevant stimuli. This suggests that individuals with ASD evince atypical modulation of LC activity in accordance with changes in attentional demands, offering a mechanistic account for attentional atypicalities in ASD.
Assuntos
Atenção/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Locus Cerúleo/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Reflexo Pupilar/fisiologiaRESUMO
AIMS: Amyloid ß-oligomers (AßO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AßO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AßO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aß production (APP-PSEN1). METHODS AND RESULTS: Immunohistochemistry and confocal microscopy, using AßO-specific antibodies, confirmed LC AßO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AßO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AßO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aß-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS: The data suggest a close association between AßO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.
Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Locus Cerúleo/patologia , Neurônios/patologia , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/fisiologiaRESUMO
Increased amygdala responsiveness is the hallmark of fear and a characteristic across patients with anxiety disorders. The amygdala is embedded in a complex regulatory circuit. Multiple different mechanisms may elevate amygdala responsiveness and lead to the occurrence of an anxiety disorder. While top-down control by the prefrontal cortex (PFC) downregulates amygdala responses, the locus coeruleus (LC) drives up amygdala activation via noradrenergic projections. This indicates that the same fearful phenotype may result from different neural mechanisms. We propose a mechanistic model that defines three different neural biomarkers causing amygdala hyper-responsiveness in patients with anxiety disorders: (a) inherent amygdala hypersensitivity, (b) low prefrontal control and (c) high LC drive. First-line treatment for anxiety disorders is exposure-based cognitive behavioural therapy, which strengthens PFC recruitment during emotion regulation and thus targets low-prefrontal control. A treatment response rate around 50% (Loerinc et al., 2015, Clinical Psychological Reviews, 42, 72-82) might indicate heterogeneity of underlying neurobiological mechanisms among patients, presumably leading to high variation in treatment benefit. Transforming insights from cognitive neuroscience into applicable clinical heuristics to categorise patients based on their underlying biomarker may support individualised treatment selection in psychiatry. We review literature on the three anxiety-related mechanisms and present a mechanistic model that may serve as a rational for pathology-based diagnostic and biomarker-guided treatment selection in psychiatry.
Assuntos
Transtornos de Ansiedade/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Transtornos de Ansiedade/terapia , Biomarcadores , Mapeamento Encefálico , Terapia Cognitivo-Comportamental , Emoções/fisiologia , Medo/fisiologia , Humanos , Locus Cerúleo/fisiopatologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologiaRESUMO
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer's disease (AD) and in Parkinson's disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.
Assuntos
Doença de Alzheimer , Locus Cerúleo , Transtornos Parkinsonianos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Locus Cerúleo/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologiaRESUMO
Evidence suggests that cognitive control functions as well as the underlying brain network, anchored by the prefrontal cortex (PFC) and the dorsal anterior cingulate cortex (dACC), are dysfunctional in schizophrenia. Catecholamine producing midbrain and brainstem nuclei are densely connected with the PFC and dACC and exert profound contributions to cognitive control processes. Dysfunctions within the underlying neurotransmitter systems are considered to play a central role in the occurrence of various symptoms of schizophrenia. We sought to investigate the putatively abnormal activation pattern of the dopaminergic midbrain nuclei, that is, ventral tegmental area (VTA) and substantia nigra as well as that of the noradrenergic locus coeruleus (LC) in patients with schizophrenia during cognitive control. A total of 28 medicated patients and 27 healthy controls were investigated with the manual version of the Stroop task using event-related fMRI. The main finding was a reduced BOLD activation in the VTA during both Stroop task conditions in patients in comparison to controls, which correlated significantly with the degree of negative symptoms. We further detected a comparable LC activation in in patients and healthy controls. However, in controls LC activation was significantly correlated with the Stroop interference time, which was not observed in patients. The finding of reduced VTA activation in schizophrenia patients lends further support to the assumed dysfunction of the DA system in schizophrenia. In addition, despite comparable LC activation, the nonsignificant correlation with the Stroop interference time might indicate altered LC functioning in schizophrenia and, thus, needs further investigations.
Assuntos
Córtex Cerebral/fisiopatologia , Função Executiva/fisiologia , Locus Cerúleo/fisiopatologia , Rede Nervosa/fisiopatologia , Desempenho Psicomotor/fisiologia , Esquizofrenia/fisiopatologia , Substância Negra/fisiopatologia , Área Tegmentar Ventral/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Locus Cerúleo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Teste de Stroop , Substância Negra/diagnóstico por imagem , Área Tegmentar Ventral/diagnóstico por imagem , Adulto JovemRESUMO
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by loss of synapses and disrupted functional connectivity (FC) across different brain regions. Early in AD progression, tau pathology is found in the locus coeruleus (LC) prior to amyloid-induced exacerbation of clinical symptoms. Here, a tau-seeding model in which preformed synthetic tau fibrils (K18) were unilaterally injected into the LC of P301L mice, equipped with multichannel electrodes for recording EEG in frontal cortical and CA1-CA3 hippocampal areas, was used to longitudinally quantify over 20 weeks of functional network dynamics in (1) power spectra; (2) FC using intra- and intersite phase-amplitude theta-gamma coupling (PAC); (3) coherence, partial coherence, and global coherent network efficiency (Eglob) estimates; and (4) the directionality of functional connectivity using extended partial direct coherence (PDC). A sustained leftward shift in the theta peak frequency was found early in the power spectra of hippocampal CA1 networks ipsilateral to the injection site. Strikingly, hippocampal CA1 coherence and Eglob measures were impaired in K18-treated animals. Estimation of instantaneous EEG amplitudes revealed deficiency in the propagation directionality of gamma oscillations in the CA1 circuit. Impaired PAC strength evidenced by decreased modulation of the theta frequency phase on gamma frequency amplitude further confirms impairments of the neural CA1 network. The present results demonstrate early dysfunctional hippocampal networks, despite no spreading tau pathology to the hippocampus and frontal cortex. The ability of the K18 seed in the brainstem LC to elicit such robust functional alterations in distant hippocampal structures in the absence of pathology challenges the classic view that tau pathology spread to an area is necessary to elicit functional impairments in that area.
Assuntos
Doença de Alzheimer/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Locus Cerúleo/fisiopatologia , Rede Nervosa/fisiopatologia , Proteínas tau/toxicidade , Doença de Alzheimer/genética , Animais , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas Estereotáxicas , Fatores de Tempo , Proteínas tau/administração & dosagemRESUMO
Gabapentinoids (gabapentin and pregabalin) and antidepressants (tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors) are often used to treat chronic pain. The descending noradrenergic inhibitory system from the locus coeruleus (LC) to the dorsal horn of the spinal cord plays an important role in the analgesic mechanisms of these drugs. Gabapentinoids activate the LC by inhibiting the release of γ-aminobutyric acid (GABA) and inducing the release of glutamate, thereby increasing noradrenaline levels in the spinal cord. Antidepressants increase noradrenaline levels in the spinal cord by inhibiting reuptake, and accumulating noradrenaline inhibits chronic pain through α2-adrenergic receptors in the spinal cord. Recent animal studies, however, revealed that the function of the descending noradrenergic inhibitory system is impaired in chronic pain states. Other recent studies found that histone deacetylase inhibitors and antidepressants restore the impaired noradrenergic descending inhibitory system acting on noradrenergic neurons in the LC.
Assuntos
Dor Crônica/tratamento farmacológico , Norepinefrina/antagonistas & inibidores , Receptores Adrenérgicos alfa 2/genética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Animais , Antidepressivos Tricíclicos/administração & dosagem , Dor Crônica/genética , Dor Crônica/fisiopatologia , Antagonistas GABAérgicos/administração & dosagem , Antagonistas GABAérgicos/metabolismo , Gabapentina/administração & dosagem , Humanos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiopatologia , Norepinefrina/genética , Norepinefrina/metabolismo , Pregabalina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/fisiopatologiaRESUMO
Children with autism spectrum disorder (ASD) exhibit diminished visual engagement to environmental stimuli. Aberrant attentional function provides an explanation by reduced phasic alerting and orienting to exogenous stimuli. We review aberrant attentional function (alerting, orienting and attentional control) in children with ASD as studied by neurocognitive and neurophysiological tasks as well as magnetic resonance imaging studies. The locus coeruleus-norepinephrine (LC-NE) system is outlined as a pacemaker of attentional function. The LC-NE system regulates adaptive gain in synaptic signal transmission, which moderates phasic alerting ('promoting') and the activation of the ventral frontoparietal attention network within orienting ('permitting'). In children with ASD, atypical LC-NE activity is proposed as underlying mechanism of aberrant attentional function. It may manifest as (i) increased tonic activity with reduced phasic reactivity to exogenous stimuli, (ii) attenuated bottom-up signalling mitigating salience and predictive reward attribution during phasic alerting, and (iii) reduced activation of the ventral frontoparietal attention system attenuating orienting to exogenous stimuli. Increased tonic pupil dilation and aberrant pupil reactivity are discussed as indicators of atypical LC-NE activity. Pupillometry is outlined as feasible method to assess alerting, orienting and attentional control that can be dissected from the pupil dilation time course. In children with ASD, aberrant attentional function through atypical LC-NE activity is proposed as developmental mechanism leading to reduced social attention as well as social interaction and communication impairments.
Assuntos
Atenção , Transtorno do Espectro Autista/fisiopatologia , Locus Cerúleo/fisiopatologia , Norepinefrina/metabolismo , Transtorno do Espectro Autista/metabolismo , Relógios Biológicos , Humanos , Locus Cerúleo/crescimento & desenvolvimento , Locus Cerúleo/metabolismoRESUMO
The locus coeruleus (LC) contains norepinephrine (NE)-synthesizing neurons that send diffuse projections throughout the central nervous system. The LC-NE system has a major role in arousal, attention and stress responses. In the brain, NE may also contribute to long-term synaptic plasticity, pain modulation, motor control, energy homeostasis and control of local blood flow. The LC is severely affected in neurodegenerative disorders including Parkinson disease (PD). Involvement of the noradrenergic neurons of the LC precedes that of dopaminergic neurons of the substantia nigra pars compacta and has been increasingly recognized as a potential major contributor to cognitive manifestations in early PD, particularly impaired attention. Abnormal noradrenergic signaling may also potentially contribute to motor manifestations of the disease.This makes the LC-NE system a major contributor to the pathobiology and potential target for therapy of PD.
Assuntos
Locus Cerúleo/patologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiopatologia , Norepinefrina/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologiaRESUMO
Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations.
Assuntos
Artrite Experimental/terapia , Locus Cerúleo/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Estimulação do Nervo Vago , Antagonistas Adrenérgicos beta/administração & dosagem , Vias Aferentes/fisiopatologia , Animais , Artrite Experimental/fisiopatologia , Artrite Reumatoide/fisiopatologia , Artrite Reumatoide/terapia , Estimulação Elétrica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Ratos Wistar , Sistema Nervoso Simpático/fisiopatologia , Canais de Cátion TRPV/genéticaRESUMO
Both preclinical and clinical studies demonstrate that depression is strongly associated with reduced light availability, which in turn contributes to decreased function of brain regions that control mood. Here, we review findings that support a critical pathway for the control of mood that depends upon ambient light. We put forward a novel hypothesis, functionally linking retina to locus coeruleus (LC) in depression, and discuss the role of norepinephrine in affective disease. Finally, we discuss how utilizing the chemogenetic tool Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to precisely control this retina-LC circuit may be used as a novel therapeutic to treat depression.
Assuntos
Nível de Alerta/fisiologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/terapia , Locus Cerúleo/fisiopatologia , Norepinefrina/fisiologia , Retina/fisiopatologia , Transdução de Sinais/fisiologia , HumanosRESUMO
Idiopathic rapid eye movement sleep behaviour disorder is characterized by nocturnal violence, increased muscle tone during rapid eye movement sleep and the lack of any other neurological disease. However, idiopathic rapid eye movement sleep behaviour disorder can precede parkinsonism and dementia by several years. Using 3 T magnetic resonance imaging and neuromelanin-sensitive sequences, we previously found that the signal intensity was reduced in the locus coeruleus/subcoeruleus area of patients with Parkinson's disease and rapid eye movement sleep behaviour disorder. Here, we studied the integrity of the locus coeruleus/subcoeruleus complex with neuromelanin-sensitive imaging in 21 patients with idiopathic rapid eye movement sleep behaviour disorder and compared the results with those from 21 age- and gender-matched healthy volunteers. All subjects underwent a clinical examination, motor, cognitive, autonomous, psychological, olfactory and colour vision tests, and rapid eye movement sleep characterization using video-polysomnography and 3 T magnetic resonance imaging. The patients more frequently had preclinical markers of alpha-synucleinopathies, including constipation, olfactory deficits, orthostatic hypotension, and subtle motor impairment. Using neuromelanin-sensitive imaging, reduced signal intensity was identified in the locus coeruleus/subcoeruleus complex of the patients with idiopathic rapid eye movement sleep behaviour. The mean sensitivity of the visual analyses of the signal performed by neuroradiologists who were blind to the clinical diagnoses was 82.5%, and the specificity was 81% for the identification of idiopathic rapid eye movement sleep behaviour. The results confirm that this complex is affected in idiopathic rapid eye movement sleep behaviour (to the same degree as it is affected in Parkinson's disease). Neuromelanin-sensitive imaging provides an early marker of non-dopaminergic alpha-synucleinopathy that can be detected on an individual basis.
Assuntos
Locus Cerúleo/patologia , Locus Cerúleo/fisiopatologia , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/fisiopatologia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Polissonografia/métodos , Inquéritos e QuestionáriosRESUMO
Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.
Assuntos
Cognição/fisiologia , Norepinefrina/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/fisiopatologia , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/metabolismoRESUMO
Emotionally arousing events are typically better remembered than mundane ones, in part because emotionally relevant aspects of our environment are prioritized in attention. Such biased attentional tuning is itself the result of associative processes through which we learn affective and motivational relevance of cues. We propose that the locus coeruleus-noradrenaline (LC-NA) system plays an important role in the genesis of attentional biases through associative learning processes as well as their maintenance. We further propose that individual differences in and disruptions of the LC-NA system underlie the development of maladaptive biases linked to psychopathology. We provide support for the proposed role of the LC-NA system by first reviewing work on attentional biases in development and its link to psychopathology in relation to alterations and individual differences in NA availability. We focus on pharmacological manipulations to demonstrate the effect of a disrupted system as well as the ADRA2b polymorphism as a tool to investigate naturally occurring differences in NA availability. We next review associative learning processes that-modulated by the LC-NA system-result in such implicit attentional biases. Further, we demonstrate how NA may influence aversive and appetitive conditioning linked to anxiety disorders as well as addiction and depression.
Assuntos
Viés de Atenção/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia , Animais , Aprendizagem por Associação/fisiologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Sinais (Psicologia) , Humanos , Locus Cerúleo/fisiopatologia , Transtornos Mentais/fisiopatologiaRESUMO
People with Rett syndrome and mouse models show autonomic dysfunction involving the brain stem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly excited, likely resulting from a defect in neuronal intrinsic membrane properties and a deficiency in GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA receptors (GABAARs) that is located extrasynaptically and mediates tonic inhibition. Here we show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked by GABAAR antagonists. With 10 µm GABA, the bicuculline-sensitive tonic currents were â¼4-fold larger in Mecp2-null LC neurons than in the WT. Single-cell PCR analysis showed that the δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. Expression levels of the δ subunit were â¼50% higher in Mecp2-null neurons than in the WT. Also increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit, α6, by â¼4-fold. The δ subunit-selective agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]]benzamide activated the tonic GABAA currents in LC neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. Consistent with these findings, in vivo application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride alleviated breathing abnormalities of conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in GABAergic synaptic inhibition and allows control of neuronal excitability and breathing abnormalities.
Assuntos
Neurônios GABAérgicos/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Síndrome de Rett/genética , Animais , Bicuculina/administração & dosagem , Agonistas GABAérgicos/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Humanos , Isoxazóis/administração & dosagem , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/biossíntese , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de GABA-A/genética , Respiração/genética , Síndrome de Rett/fisiopatologia , Análise de Célula Única , Sinapses/efeitos dos fármacos , Sinapses/metabolismoRESUMO
Connectionist modeling was used to investigate the brain mechanisms responsible for pain's ability to shift attention away from another stimulus modality and toward itself. Different connectionist model architectures were used to simulate the different possible brain mechanisms underlying this attentional bias, where nodes in the model simulated the brain areas thought to mediate the attentional bias, and the connections between the nodes simulated the interactions between the brain areas. Mathematical optimization techniques were used to find the model parameters, such as connection strengths, that produced the best quantitative fits of reaction time and event-related potential data obtained in our previous work. Of the several architectures tested, two produced excellent quantitative fits of the experimental data. One involved an unexpected pain stimulus activating somatic threat detectors in the dorsal posterior insula. This threat detector activity was monitored by the medial prefrontal cortex, which in turn evoked a phasic response in the locus coeruleus. The locus coeruleus phasic response resulted in a facilitation of the cortical areas involved in decision and response processes time-locked to the painful stimulus. The second architecture involved the presence of pain causing an increase in general arousal. The increase in arousal was mediated by locus coeruleus tonic activity, which facilitated responses in the cortical areas mediating the sensory, decision, and response processes involved in the task. These two neural network architectures generated competing predictions that can be tested in future studies.