Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
RNA ; 29(9): 1355-1364, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268327

RESUMO

Aptamers with fluorogenic ligands are emerging as useful tools to quantify and track RNA molecules. The RNA Mango family of aptamers have a useful combination of tight ligand binding, bright fluorescence, and small size. However, the simple structure of these aptamers, with a single base-paired stem capped by a G-quadruplex, can limit the sequence and structural modifications needed for many use-inspired designs. Here we report new structural variants of RNA Mango that have two base-paired stems attached to the quadruplex. Fluorescence saturation analysis of one of the double-stemmed constructs showed a maximum fluorescence that is ∼75% brighter than the original single-stemmed Mango I. A small number of mutations to nucleotides in the tetraloop-like linker of the second stem were subsequently analyzed. The effect of these mutations on the affinity and fluorescence suggested that the nucleobases of the second linker do not directly interact with the fluorogenic ligand (TO1-biotin), but may instead induce higher fluorescence by indirectly altering the ligand properties in the bound state. The effects of the mutations in this second tetraloop-like linker indicate the potential of this second stem for rational design and reselection experiments. Additionally, we demonstrated that a bimolecular mango designed by splitting the double-stemmed Mango can function when two RNA molecules are cotranscribed from different DNA templates in a single in vitro transcription. This bimolecular Mango has potential application in detecting RNA-RNA interactions. Together, these constructs expand the designability of the Mango aptamers to facilitate future applications of RNA imaging.


Assuntos
Aptâmeros de Nucleotídeos , Mangifera , Mangifera/genética , Mangifera/química , Mangifera/metabolismo , Aptâmeros de Nucleotídeos/química , Ligantes , Corantes Fluorescentes/química , RNA/química
2.
Proteomics ; 24(5): e2300239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37681534

RESUMO

Despite substantial advances in the use of proteomic technologies, their widespread application in fruit tissues of non-model and recalcitrant species remains limited. This hampers the understanding of critical molecular events during the postharvest period of fleshy tropical fruits. Therefore, we evaluated label-free quantitation (LFQ) and TMT-SPS-MS3 (TMT) approaches to analyse changes in the protein profile of mango peels during postharvest period. We compared two extraction methods (phenol and chloroform/methanol) and two peptide fractionation schemes (SCX and HPRP). We accurately identified 3065 proteins, of which, 1492 were differentially accumulated over at 6 days after harvesting (DAH). Both LFQ and TMT approaches share 210 differential proteins including cell wall proteins associated with fruit softening, as well as aroma and flavour-related proteins, which were increased during postharvest period. The phenolic protein extraction and the high-pH reverse-phase peptide fractionation was the most effective pipeline for relative quantification. Nevertheless, the information provided by the other tested strategies was significantly complementary. Besides, LFQ spectra allowed us to track down intact N-glycopeptides corroborating N-glycosylations on the surface of a desiccation-related protein. This work represents the largest proteomic comparison of mango peels during postharvest period made so far, shedding light on the molecular foundation of edible fruit during ripening.


Assuntos
Mangifera , Mangifera/química , Mangifera/metabolismo , Proteômica , Frutas/metabolismo , Fenóis/análise , Fenóis/metabolismo , Peptídeos/análise
3.
Drug Dev Ind Pharm ; 50(5): 432-445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526993

RESUMO

OBJECTIVE: The purpose of this research was to determine any connections between the characteristics of oleogels made of beeswax and the impact of mango butter. METHODS: Oleogel was prepared through inverted tube methods, and optimized through oil binding capacity. Other evaluations like bright field and polarized microscopy, Fourier-transform infrared (FTIR) spectroscopy, crystallization kinetics, mechanical study, and X-ray diffractometry (XRD). The drug release kinetic studies and in vitro antibacterial studies were performed. RESULTS: FTIR study reveals that the gelation process does not significantly alter the chemical composition of the individual components. Prepared gel exhibiting fluid-like behavior or composed of brittle networks is particularly vulnerable to disruptions in their network design. The incorporation of mango butter increases the drug permeation. In-vitro microbial efficacy study was found to be excellent. CONCLUSION: The studies revealed that mango butter can be used to modify the physico-chemical properties of the oleogels.


Assuntos
Mangifera , Compostos Orgânicos , Óleos de Plantas , Ceras , Ceras/química , Mangifera/química , Compostos Orgânicos/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Administração Tópica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Liberação Controlada de Fármacos
4.
J Sci Food Agric ; 104(10): 5907-5920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416598

RESUMO

BACKGROUND: Mangifera indica L. (mango), a medicinal plant rich in biologically active compounds, has potential to be used in disease-preventing and health-promoting products. The present investigation reveals and uncovers bioactive metabolites with remarkable therapeutic efficiency from mango (family: Anacardiaceae) seeds. RESULTS: Biological activity was determined by antimicrobial, antioxidant and anticancer assays, and metabolite profiling was performed on gas chromatography coupled to quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) platforms. Validation of active metabolites was carried out by in silico molecular docking (Molinspiration Cheminformatics Server and PASS). Extracted and identified metabolites were screened; 54 compounds associated with various groups were selected for the in silico interaction study. CONCLUSIONS: Molecular docking revealed lead molecules with a potential binding energy score, efficacy and stable modulation with a selected protein domain. Investigation, directed by in vitro and in silico analysis, confirms mango seeds as an excellent source of potential metabolites as a therapeutic agent. © 2024 Society of Chemical Industry.


Assuntos
Descoberta de Drogas , Mangifera , Metabolômica , Simulação de Acoplamento Molecular , Extratos Vegetais , Sementes , Mangifera/química , Sementes/química , Sementes/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/metabolismo
5.
Environ Monit Assess ; 196(5): 468, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656463

RESUMO

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Pesados , Material Particulado , Folhas de Planta , Folhas de Planta/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Material Particulado/análise , Mangifera/química , Bangladesh , Psidium/química
6.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239906

RESUMO

This study investigated the health-promoting effects and prebiotic functions of mango peel powder (MPP) both as a plain individual ingredient and when incorporated in yoghurt during simulated digestion and fermentation. The treatments included plain MPP, plain yoghurt (YA), yoghurt fortified with MPP (YB), and yoghurt fortified with MPP and lactic acid bacteria (YC), along with a blank (BL). The identification of polyphenols in the extracts of insoluble digesta and phenolic metabolites after the in vitro colonic fermentation were performed employing LC-ESI-QTOF-MS2. These extracts were also subjected to pH, microbial count, production of SCFA, and 16S rRNA analyses. The characterisation of phenolic profiles identified 62 phenolic compounds. Among these compounds, phenolic acids were the major compounds that underwent biotransformation via catabolic pathways such as ring fission, decarboxylation, and dehydroxylation. Changes in pH indicated that YC and MPP reduced the media pH from 6.27 and 6.33 to 4.50 and 4.53, respectively. This decline in pH was associated with significant increases in the LAB counts of these samples. The Bifidobacteria counts were 8.11 ± 0.89 and 8.02 ± 1.01 log CFU/g in YC and MPP, respectively, after 72 h of colonic fermentation. Results also showed that the presence of MPP imparted significant variations in the contents and profiles of individual short chain fatty acids (SCFA) with more predominant production of most SCFA in the MPP and YC treatments. The 16s rRNA sequencing data indicated a highly distinctive microbial population associated with YC in terms of relative abundance. These findings suggested MPP as a promising ingredient for utilisation in functional food formulations aiming to enhance gut health.


Assuntos
Mangifera , Probióticos , Mangifera/química , RNA Ribossômico 16S/metabolismo , Pós , Fermentação , Iogurte/microbiologia , Fenóis , Ácidos Graxos Voláteis/metabolismo , Digestão , Biotransformação , Extratos Vegetais
7.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985439

RESUMO

Shigellosis is a serious foodborne diarrheal disease caused by the Shigella species. It is a critical global health issue. In developing countries, shigellosis causes most of the mortality in children below 5 years of age. Globally, around 165 million cases of diarrhea caused by Shigella are reported, which accounts for almost 1 million deaths, in which the majority are recorded in Third World nations. In this study, silver nanoparticles were synthesized using Mangifera indica kernel (MK-AgNPs) seed extracts. The biosynthesized M. indica silver nanoparticles (MK-AgNPs) were characterized using an array of spectroscopic and microscopic tools, such as UV-Vis, scanning electron microscopy, particle size analyzer, Fourier transform infrared spectroscopy, and X-ray diffractometer. The nanoparticles were spherical in shape and the average size was found to be 42.7 nm. The MK-AgNPs exhibited remarkable antibacterial activity against antibiotic-resistant clinical Shigella sp. The minimum inhibitory concentration (MIC) value of the MK-AgNPs was found to be 20 µg/mL against the multi-drug-resistant strain Shigella flexneri. The results clearly demonstrate that MK-AgNPs prepared using M. indica kernel seed extract exhibited significant bactericidal action against pathogenic Shigella species. The biosynthesized nanoparticles from mango kernel could possibly prove therapeutically useful and effective in combating the threat of shigellosis after careful investigation of its toxicity and in vivo efficacy.


Assuntos
Disenteria Bacilar , Mangifera , Nanopartículas Metálicas , Shigella , Criança , Humanos , Mangifera/química , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Disenteria Bacilar/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Sementes
8.
Biophys J ; 121(3): 421-429, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971617

RESUMO

Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.


Assuntos
Aptâmeros de Nucleotídeos , Mangifera , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Mangifera/química , Mangifera/genética , Mangifera/metabolismo , RNA/química , Dobramento de RNA
9.
Pharmacol Res ; 182: 106283, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662629

RESUMO

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Assuntos
Artrite Gotosa , Mangifera , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Ciclo-Oxigenase 2/metabolismo , Mangifera/química , Camundongos , Extratos Vegetais/farmacologia , Linfócitos T Reguladores , Células Th17
10.
Food Microbiol ; 108: 104095, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088111

RESUMO

Processing, such as fresh cutting and drying, is essential to enhance profitability; therefore, to limit waste and reduce losses in fruit production such as mangoes. Metabarcoding and microbial enumeration methods were utilized to explore the structure of mango microbiota, as well as their evolution after processing. Two mango ripening stages of cv. Cogshall were selected and processed into fresh-cut pieces or dried slices. Microbiological and physicochemical parameters were monitored during product storage, in order to assess the dynamics of quantitative and qualitative variations of the microbial flora. Proteobacteria was the dominant bacterial phylum of the mango surface and accounted for 73.16%, followed by Actinobacteria (10.16%), Bacteroidetes (7.82%) and Firmicutes (6.68%). Aureobasidium and Cladosporium were the only two genera shared between all types of samples (peel surface, dried slices and mango fresh-cut). However, the bacterial genera Lactobacillus and Pantoea were the most abundant in fresh-cut mango after 14 days of storage. Ascomycota was the dominant fungal phylum in the mango surface and accounted for 90.76% of the total number of detected sequences, followed by Basidiomycota (9.21%). In total, 866 microbial genera were associated with mango surface (562 bacterial and 304 fungal). Among detected yeast genera, Saccharomyces, Candida and Malassezia prevailed in mango flesh and were replaced by Wickerhamomyces after 14 days of storage. Alpha and beta diversity analyzes revealed differences in fungal and bacterial communities on fruit peel, in fresh-cut, dried slices, and during conservation (fresh-cut and dried slices). Mango processing (washing, peeling, cutting and drying) reduced the richness and the microbial diversity (bacterial and fungal) associated to the fruit, and drying limits the development of cultivable microorganisms during storage in comparison to fresh-cuts mangoes.


Assuntos
Mangifera , Micobioma , Bactérias/genética , Manipulação de Alimentos/métodos , Mangifera/química , Árvores
11.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144608

RESUMO

Mass spectrometry imaging is a novel molecular imaging technique that has been developing rapidly in recent years. Air flow-assisted ionization mass spectrometry imaging (AFAI-MSI) has received wide attention in the biomedical field because of its features such as not needing a pretreatment sample, having high sensitivity, and wide coverage of metabolite detection. In this study, we set up a mass spectrometry imaging method for analyzing low molecular metabolites in mango fruits by the AFAI-MSI method. Compounds such as organic acids, vitamin C, and phenols were detected from mango tissue by mass spectrometry under the negative ion scanning mode, and their spatial distribution was analyzed. As a result, all the target compounds showed different distributions. Citric acid was mainly distributed in the pulp. Malic acid, quinic acid, and vitamin C universally existed in the pulp and peel. However, galloylglucose isomer and 5-galloylquinic acid were predominantly found in the peel. These results show that AFAI-MSI can be used for the analysis of mango fruit endogenous metabolites conveniently and directly, which will facilitate the rapid identification and in situ characterization of plant endogenous substances.


Assuntos
Mangifera , Ácido Ascórbico/análise , Ácido Cítrico/metabolismo , Frutas/química , Mangifera/química , Espectrometria de Massas/métodos , Peso Molecular , Fenóis/química , Ácido Quínico/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Molecules ; 27(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011491

RESUMO

Mangifera indica can generate up to 60% of polluting by-products, including peels. However, it has been shown that flavonoids and mangiferin are mainly responsible for the antioxidant, anti-inflammatory, and antibacterial activities closely related to the wound-healing process. The chemical composition of MEMI (methanolic extract of M. indica) was analyzed by HPLC-DAD, as well as concentrations of total phenol (TPC) and flavonoids (TFC) and antioxidant activity (SA50). Wound-healing efficacy was determined by measurements of wound contraction, histological analysis, and tensiometric method; moreover, anti-inflammatory, antibacterial, and acute dermal toxicity (OECD 402) were also evaluated. Phenol, resorcinol, conjugated resorcinol, and mangiferin were detected. TPC, TFC, and SA50 were 136 mg GAE/g, 101.66 mg QE/g, and 36.33 µg/mL, respectively. Tensile strength and wound contraction closure did not show significant differences between MEMI and dexpanthenol groups. Histological analysis (after 14 days) shows a similar architecture between MEMI treatment and normal skin. MEMI exhibits a reduction in edema. Staphylococcus epidermidis had an MIC of 2 mg/mL, while Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli reached 4 mg/mL. The MEMI showed no signs of toxicity. Therefore, this study demonstrates multiple targets that flavonoids and mangiferin of MEMI may present during the healing process.


Assuntos
Mangifera/química , Extratos Vegetais , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Animais , Modelos Animais de Doenças , Flavonoides/química , Flavonoides/farmacologia , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/microbiologia , Xantonas/química , Xantonas/farmacologia
13.
J Sci Food Agric ; 102(7): 2813-2825, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34738641

RESUMO

BACKGROUND: The major by-products of mango processing are the seeds, which represent approximately 15-20% of the fruit. The process protocol for isolation of starch from mango kernel was standardized based on starch yield, starch purity and colour values using centrifugation and chemical method. Optimized starches obtained from both methods were further investigated for estimation of functional properties and were characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and pasting properties analysis. RESULTS: The slurry making of mango kernels with a solid-to-water ratio of 1:3 at a centrifugation frequency of 3 times was found to be the best among all the experimental combinations (solid-to-water proportion (1:2, 1:3 and 1:4, w/v) and centrifugation frequency (2, 3 and 4 times)) with a starch yield of 48.43 ± 1.08% and purity of 76.46 ± 0.83%. In the chemical method of starch isolation (washing was done with 0.1 mol L-1 NaOH and 0.1 mol L-1 HCl at three levels each), the sample treated with 60% (w/v) 0.1 mol L-1 NaOH and 10% (w/v) 0.1 mol L-1 HCl resulted in 36.50 ± 0.58% starch yield with a purity of 92.03 ± 0.87%. Among the functional properties, the chemically isolated starch showed significantly higher paste clarity (45.79 ± 2.36%) than starch obtained using the centrifugation process (12.50 ± 1.57%). The chemically isolated starch also exhibited better colour attributes, which were very close to those of laboratory-grade starch. CONCLUSION: Detailed characterization studies inferred that both the starches possessed good functional, structural and thermal properties, indicating suitability for food and non-food applications. © 2021 Society of Chemical Industry.


Assuntos
Mangifera , Amido , Amilose/química , Mangifera/química , Padrões de Referência , Hidróxido de Sódio , Amido/química , Água , Difração de Raios X
14.
Biosci Biotechnol Biochem ; 85(8): 1789-1797, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34057172

RESUMO

Headspace solid-phase microextraction combined with gas chromatography/mass spectrometry is one of the strongest tools for comprehensive analysis of volatile compounds and has been used to analyze aromatic components of mango and investigate its varietal characteristics. In this study, profiling of aroma compounds in 17 mango cultivars, grown in the same green house to exclude the effect of environmental factors, was conducted and the patterns were subjected to principal component analysis (PCA) to identify the relationship between the aroma components and cultivars. Fifty-nine different volatile constituents were detected from the blends of these 17 mango cultivars. The cultivars were divided into 4 clusters using PCA based on the volatile components determined in the study. Aiko was found to mainly contain δ-3-carene and showed a composition more similar to its pollen parent, Irwin, than to its seed parent, Chiin Hwang No. 1.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Mangifera/química , Compostos Orgânicos Voláteis/análise , Análise de Componente Principal , Microextração em Fase Sólida/métodos
15.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946715

RESUMO

The green synthesis of iron oxide nanoparticles (FeO NP) has been investigated using the extract in absolute ethanolic and alcoholic solvents 96% from the peel of the mango fruit (Mangifera indica), thus evaluating the influence of the type of solvent on the extraction of reducing metabolites. A broad approach to characterization initially controlled by UV-vis spectrophotometry has been directed, the formation mechanism was evaluated by Fourier transform infrared spectroscopy (FTIR), the magnetic properties by characterization by Physical Property Measurement System (PPSM), in addition to a large number of techniques such as X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (DRX), transmission electron microscopy (TEM/STEM), electron energy loss spectroscopy (EELS), and Z potential to confirm the formation of FeO NP. The results suggest better characteristics for FeO NP synthesized using 96% alcoholic solvent extract. The successful synthesis was directly proven in the removal of metals (Cr-VI, Cd, and Pb) as a potential alternative in the remediation of agricultural soils.


Assuntos
Compostos Férricos/química , Química Verde , Mangifera/química , Nanopartículas/química , Extratos Vegetais/química , Solo/química , Produção Agrícola
16.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946765

RESUMO

The requirements for analytical tools are changing due to the global production chain, the increasing cases of adulteration, and the growing trend towards consumption of plant-based food products worldwide. The assessment of bioactivity of natural foods is currently not a quality criterion, and a paradigm shift is postulated. A non-targeted effect-directed profiling by high-performance thin-layer chromatography hyphenated with five different effect-directed assays was developed exemplarily for the puree and juice products of mango Mangifera indica L. (Anacardiaceae) and pineapple Ananas comosus (L.) Merr. (Bromeliaceae). Several bioactive compounds were detected in each sample. The additional bioactivity information obtained through effect-directed profiles improves, expands and modernizes product control. Non-target effect-directed profiling adds a new perspective to previous target analysis results that can be used not only to ensure health claims based on bioactive compounds, but also to detect unknown bioactive compounds coming from contamination or residues or changes caused by food processing.


Assuntos
Ananas/química , Análise de Alimentos , Manipulação de Alimentos , Sucos de Frutas e Vegetais/análise , Frutas/química , Mangifera/química , Cromatografia Líquida de Alta Pressão , Tailândia
17.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920056

RESUMO

Colombian mango production, which exceeded 261,000 t in 2020, generates about 40% of the whole fruit as solid waste, of which more than 50% are seed kernels (over 52,000 t solid by-product); though none is currently used for commercial purposes. This study reports the results of the supercritical carbon dioxide (scCO2) extraction of an oil rich in essential fatty acids (EFAs) from revalorized mango seed kernels and the optimization of the process by the Response Surface Methodology (RSM). In pilot-scale scCO2 experiments, pressure (23-37 MPa) and temperature (52-73 °C) were varied, using 4.5 kg of CO2. The highest experimental oil extraction yield was 83 g/kg (37 MPa and 63 °C); while RSM predicted that 84 g/kg would be extracted at 35 MPa and 65 °C. Moreover, by fine-tuning pressure and temperature it was possible to obtain an EFA-rich lipid fraction in linoleic (37 g/kg) and α-linolenic (4 g/kg) acids, along with a high oleic acid content (155 g/kg), by using a relatively low extraction pressure (23 MPa), which makes the process a promising approach for the extraction of oil from mango waste on an industrial scale, based on a circular economy model.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico , Mangifera/química , Sementes/química , Ácidos Graxos/análise , Projetos Piloto , Óleos de Plantas/isolamento & purificação , Pressão , Temperatura
18.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946598

RESUMO

Phenolic compounds from mango (M. indica) seed kernels (MSK) var. Sugar were obtained using supercritical CO2 and EtOH as an extraction solvent. For this purpose, a central composite design was carried out to evaluate the effect of extraction pressure (11-21 MPa), temperature (40-60 °C), and co-solvent contribution (5-15% w/w EtOH) on (i) extraction yield, (ii) oxidative stability (OS) of sunflower edible oil (SEO) with added extract using the Rancimat method, (iii) total phenolics content, (iv) total flavonoids content, and (v) DPPH radical assay. The most influential variable of the supercritical fluid extraction (SFE) process was the concentration of the co-solvent. The best OS of SEO was reached with the extract obtained at 21.0 MPa, 60 °C and 15% EtOH. Under these conditions, the extract increased the OS of SEO by up to 6.1 ± 0.2 h (OS of SEO without antioxidant, Control, was 3.5 h). The composition of the extract influenced the oxidative stability of the sunflower edible oil. By SFE it was possible to obtain extracts from mango seed kernels (MSK) var. Sugar that transfer OS to the SEO. These promissory extracts could be applied to foods and other products.


Assuntos
Antioxidantes/farmacologia , Mangifera/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Cromatografia com Fluido Supercrítico , Fenóis/química , Fenóis/isolamento & purificação , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
19.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201400

RESUMO

Mango peels are usually discarded as waste; however, they contain phytochemicals and could provide functional properties to food and promote human health. This study aimed to determine the optimal lactic acid bacteria for fermentation of mango peel and evaluate the effect of mango peel on neuronal protection in Neuron-2A cells against amyloid beta (Aß) treatment (50 µM). Mango peel can be fermented by different lactic acid bacteria species. Lactobacillus acidophilus (BCRC14079)-fermented mango peel produced the highest concentration of lactic acid bacteria (exceeding 108 CFU/mL). Mango peel and fermented mango peel extracts upregulated brain-derived neurotrophic factor (BDNF) expression for 1.74-fold in Neuron-2A cells. Furthermore, mango peel fermented products attenuated oxidative stress in Aß-treated neural cells by 27%. Extracts of L. acidophilus (BCRC14079)-fermented mango peel treatment decreased Aß accumulation and attenuated the increase of subG1 caused by Aß induction in Neuron-2A cells. In conclusion, L. acidophilus (BCRC14079)-fermented mango peel acts as a novel neuronal protective product by inhibiting oxidative stress and increasing BDNF expression in neural cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fermentação/fisiologia , Frutas/química , Mangifera/química , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Lactobacillales , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia
20.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919710

RESUMO

In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water-ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.


Assuntos
Antibacterianos/farmacologia , Frutas/química , Derivados da Hipromelose/química , Extratos Vegetais/química , Embalagem de Produtos , Escherichia coli/efeitos dos fármacos , Flavonoides/análise , Garcinia mangostana/química , Mangifera/química , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Micro-Ondas , Fenóis/análise , Quercetina/química , Sapindaceae/química , Staphylococcus aureus/efeitos dos fármacos , Xantonas/análise , Xantonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA