Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709823

RESUMO

Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.


Assuntos
Linfócitos T CD8-Positivos , Movimento Celular , Leishmaniose Cutânea , Receptores CCR5 , Animais , Receptores CCR5/metabolismo , Receptores CCR5/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores CCR5/farmacologia , Maraviroc/farmacologia , Feminino
2.
Immunity ; 46(6): 1005-1017.e5, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636951

RESUMO

CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.


Assuntos
Quimiocina CCL5/química , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/imunologia , HIV-1/fisiologia , Modelos Moleculares , Mimetismo Molecular , Receptores CCR5/química , Animais , Antagonistas dos Receptores CCR5/química , Antagonistas dos Receptores CCR5/farmacologia , Quimiocina CCL5/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cicloexanos/química , Cicloexanos/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Infecções por HIV/tratamento farmacológico , Humanos , Maraviroc , Ligação Proteica , Conformação Proteica , Receptores CCR5/metabolismo , Células Sf9 , Spodoptera , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Internalização do Vírus/efeitos dos fármacos
3.
Nature ; 565(7739): 318-323, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542158

RESUMO

HIV-1 envelope glycoprotein (Env), which consists of trimeric (gp160)3 cleaved to (gp120 and gp41)3, interacts with the primary receptor CD4 and a coreceptor (such as chemokine receptor CCR5) to fuse viral and target-cell membranes. The gp120-coreceptor interaction has previously been proposed as the most crucial trigger for unleashing the fusogenic potential of gp41. Here we report a cryo-electron microscopy structure of a full-length gp120 in complex with soluble CD4 and unmodified human CCR5, at 3.9 Å resolution. The V3 loop of gp120 inserts into the chemokine-binding pocket formed by seven transmembrane helices of CCR5, and the N terminus of CCR5 contacts the CD4-induced bridging sheet of gp120. CCR5 induces no obvious allosteric changes in gp120 that can propagate to gp41; it does bring the Env trimer close to the target membrane. The N terminus of gp120, which is gripped by gp41 in the pre-fusion or CD4-bound Env, flips back in the CCR5-bound conformation and may irreversibly destabilize gp41 to initiate fusion. The coreceptor probably functions by stabilizing and anchoring the CD4-induced conformation of Env near the cell membrane. These results advance our understanding of HIV-1 entry into host cells and may guide the development of vaccines and therapeutic agents.


Assuntos
Antígenos CD4/química , Antígenos CD4/ultraestrutura , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/ultraestrutura , Receptores CCR5/química , Receptores CCR5/ultraestrutura , Receptores de HIV/química , Receptores de HIV/ultraestrutura , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Sítios de Ligação , Antígenos CD4/isolamento & purificação , Antígenos CD4/metabolismo , Linhagem Celular , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Proteína gp120 do Envelope de HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/ultraestrutura , Humanos , Ligantes , Maraviroc/química , Maraviroc/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores CCR5/isolamento & purificação , Receptores CCR5/metabolismo , Receptores de HIV/antagonistas & inibidores , Receptores de HIV/metabolismo
4.
BMC Neurol ; 24(1): 190, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844862

RESUMO

BACKGROUND: Post-stroke depression (PSD) is a significant impediment to successful rehabilitation and recovery after a stroke. Current therapeutic options are limited, leaving an unmet demand for specific and effective therapeutic options. Our objective was to investigate the safety of Maraviroc, a CCR5 antagonist, as a possible mechanism-based add-on therapeutic option for PSD in an open-label proof-of-concept clinical trial. METHODS: We conducted a 10-week clinical trial in which ten patients with subcortical and cortical stroke, suffering from PSD. were administered a daily oral dose of 300 mg Maraviroc. Participants were then monitored for an additional eight weeks. The primary outcome measure was serious treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation. The secondary outcome measure was a change in the Montgomery-Asberg Depression Rating Scale (MADRS). RESULTS: Maraviroc was well tolerated, with no reports of serious adverse events or discontinuations due to intolerance. The MADRS scores substantially reduced from baseline to week 10 (mean change: -16.4 ± 9.3; p < 0.001). By the conclusion of the treatment phase, a favorable response was observed in five patients, with four achieving remission. The time to response was relatively short, approximately three weeks. After the cessation of treatment, MADRS scores increased at week 18 by 6.1 ± 9.6 points (p = 0.014). CONCLUSIONS: Our proof-of-concept study suggests that a daily dosage of 300 mg of Maraviroc may represent a well-tolerated and potentially effective pharmacological approach to treating PSD. Further comprehensive placebo-controlled studies are needed to assess the impact of Maraviroc augmentation on PSD. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05932550, Retrospectively registered: 28/06/2023.


Assuntos
Antagonistas dos Receptores CCR5 , Maraviroc , Estudo de Prova de Conceito , Acidente Vascular Cerebral , Humanos , Maraviroc/administração & dosagem , Maraviroc/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Antagonistas dos Receptores CCR5/uso terapêutico , Antagonistas dos Receptores CCR5/administração & dosagem , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/psicologia , Acidente Vascular Cerebral/tratamento farmacológico , Idoso , Depressão/tratamento farmacológico , Depressão/etiologia , Resultado do Tratamento , Triazóis/uso terapêutico , Triazóis/administração & dosagem , Adulto , Receptores CCR5/metabolismo
5.
J Immunol ; 208(5): 1170-1179, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140134

RESUMO

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.


Assuntos
Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Leucocidinas/metabolismo , Células T Invariantes Associadas à Mucosa/patologia , Receptores CCR5/metabolismo , Staphylococcus aureus/patogenicidade , Antagonistas dos Receptores CCR5/farmacologia , Linhagem Celular , Humanos , Subunidade p35 da Interleucina-12/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária/imunologia , Maraviroc/farmacologia , Células T Invariantes Associadas à Mucosa/imunologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Células THP-1 , Fatores de Virulência/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612597

RESUMO

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Assuntos
Analgésicos Opioides , Imidazóis , Naftalenos , Nitrocompostos , Sulfóxidos , Traumatismos do Sistema Nervoso , Humanos , Animais , Camundongos , Ratos , Maraviroc , Sistema Nervoso Central , Sistema Nervoso Periférico
7.
J Am Chem Soc ; 145(20): 11173-11184, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37116188

RESUMO

G protein-coupled receptors (GPCRs) modulate diverse cellular signaling pathways and are important drug targets. Despite the availability of high-resolution structures, the discovery of allosteric modulators remains challenging due to the dynamic nature of GPCRs in native membranes. We developed a strategy to covalently tether drug fragments adjacent to allosteric sites in GPCRs to enhance their potency and enable fragment-based drug screening in cell-based systems. We employed genetic code expansion to site-specifically introduce noncanonical amino acids with reactive groups in C-C chemokine receptor 5 (CCR5) near an allosteric binding site for the drug maraviroc. We then used molecular dynamics simulations to design heterobifunctional maraviroc analogues consisting of a drug fragment connected by a flexible linker to a reactive moiety capable of undergoing a bioorthogonal coupling reaction. We synthesized a library of these analogues and employed the bioorthogonal inverse electron demand Diels-Alder reaction to couple the analogues to the engineered CCR5 in live cells, which were then assayed using cell-based signaling assays. Tetherable low-affinity maraviroc fragments displayed an increase in potency for CCR5 engineered with reactive unnatural amino acids that were adjacent to the maraviroc binding site. The strategy we describe to tether novel drug fragments to GPCRs should prove useful to probe allosteric or cryptic binding site functionality in fragment-based GPCR-targeted drug discovery.


Assuntos
Aminoácidos , Receptores Acoplados a Proteínas G , Maraviroc , Sítios de Ligação , Sítio Alostérico , Regulação Alostérica , Ligantes
8.
J Virol ; 96(14): e0185121, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862673

RESUMO

A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.


Assuntos
Proteína gp120 do Envelope de HIV , HIV-1 , Internalização do Vírus , Anticorpos Neutralizantes/metabolismo , Sítios de Ligação , Antígenos CD4/metabolismo , Farmacorresistência Viral/genética , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Maraviroc/farmacologia , Polimorfismo Genético , Ligação Proteica
9.
Acta Pharmacol Sin ; 44(10): 1935-1947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37198412

RESUMO

Chemokine receptor 5 (CCR5) is one of the main co-receptors of HIV-1, and has been found to be a potential therapeutic target for stroke. Maraviroc is a classic CCR5 antagonist, which is undergoing clinical trials against stroke. As maraviroc shows poor blood-brain barrier (BBB) permeability, it is of interest to find novel CCR5 antagonists suitable for neurological medication. In this study we characterized the therapeutic potential of a novel CCR5 antagonist A14 in treating ischemic stroke mice. A14 was discovered in screening millions compounds in the Chemdiv library based on the molecular docking diagram of CCR5 and maraviroc. We found that A14 dose-dependently inhibited the CCR5 activity with an IC50 value of 4.29 µM. Pharmacodynamic studies showed that A14 treatment exerted protective effects against neuronal ischemic injury both in vitro and vivo. In a SH-SY5Y cell line overexpressing CCR5, A14 (0.1, 1 µM) significantly alleviated OGD/R-induced cell injury. We found that the expression of CCR5 and its ligand CKLF1 was significantly upregulated during both acute and recovery period in focal cortical stroke mice; oral administration of A14 (20 mg·kg-1·d-1, for 1 week) produced sustained protective effect against motor impairment. A14 treatment had earlier onset time, lower onset dosage and much better BBB permeability compared to maraviroc. MRI analysis also showed that A14 treatment significantly reduced the infarction volume after 1 week of treatment. We further revealed that A14 treatment blocked the protein-protein interaction between CCR5 and CKLF1, increasing the activity of CREB signaling pathway in neurons, thereby improving axonal sprouting and synaptic density after stroke. In addition, A14 treatment remarkably inhibited the reactive proliferation of glial cells after stroke and reduced the infiltration of peripheral immune cells. These results demonstrate that A14 is a promising novel CCR5 antagonist for promoting neuronal repair after ischemic stroke. A14 blocked the protein-protein interaction between CKLF1 and CCR5 after stroke by binding with CCR5 stably, improved the infarct area and promoted motor recovery through reversing the CREB/pCREB signaling which was inhibited by activated CCR5 Gαi pathway, and benefited to the dendritic spines and axons sprouting.


Assuntos
Antagonistas dos Receptores CCR5 , AVC Isquêmico , Neuroblastoma , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , AVC Isquêmico/tratamento farmacológico , Maraviroc/uso terapêutico , Maraviroc/farmacologia , Simulação de Acoplamento Molecular , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Antagonistas dos Receptores CCR5/química , Antagonistas dos Receptores CCR5/farmacologia
10.
J Allergy Clin Immunol ; 149(1): 113-124.e7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34146578

RESUMO

BACKGROUND: Many patients with severe asthma (SA) fail to respond to type 2 inflammation-targeted therapies. We previously identified a cohort of subjects with SA expressing type 1 inflammation manifesting with IFN-γ expression and variable type 2 responses. OBJECTIVE: We investigated the role of the chemotactic receptors C-X-C chemokine receptor 3 (CXCR3) and C-C chemokine receptor 5 (CCR5) in establishing type 1 inflammation in SA. METHODS: Bronchoalveolar lavage microarray data from the Severe Asthma Research Program I/II were analyzed for pathway expression and paired with clinical parameters. Wild-type, Cxcr3-/-, and Ccr5-/- mice were exposed to a type 1-high SA model with analysis of whole lung gene expression and histology. Wild-type and Cxcr3-/- mice were treated with a US Food and Drug Administration-approved CCR5 inhibitor (maraviroc) with assessment of airway resistance, inflammatory cell recruitment by flow cytometry, whole lung gene expression, and histology. RESULTS: A cohort of subjects with increased IFN-γ expression showed higher asthma severity. IFN-γ expression was correlated with CXCR3 and CCR5 expression, but in Cxcr3-/- and Ccr5-/- mice type 1 inflammation was preserved in a murine SA model, most likely owing to compensation by the other pathway. Incorporation of maraviroc into the experimental model blunted airway hyperreactivity despite only mild effects on lung inflammation. CONCLUSIONS: IFNG expression in asthmatic airways was strongly correlated with expression of both the chemokine receptors CXCR3 and CCR5. Although these pathways provide redundancy for establishing type 1 lung inflammation, inhibition of the CCL5/CCR5 pathway with maraviroc provided unique benefits in reducing airway hyperreactivity. Targeting this pathway may be a novel approach for improving lung function in individuals with type 1-high asthma.


Assuntos
Asma/imunologia , Receptores CCR5/imunologia , Receptores CXCR3/imunologia , Adulto , Resistência das Vias Respiratórias , Animais , Asma/tratamento farmacológico , Asma/fisiopatologia , Brônquios/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Antagonistas dos Receptores CCR5/uso terapêutico , Feminino , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Interferon gama/imunologia , Masculino , Maraviroc/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores CCR5/genética , Receptores CXCR3/genética , Mucosa Respiratória/imunologia , Índice de Gravidade de Doença , Adulto Jovem
11.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770862

RESUMO

In this study, nine forced degradation products of maraviroc were found using chemometric analysis. This antiretroviral drug was subjected to photolytic, oxidative, as well as neutral, basic and acidic hydrolysis stress conditions. Additionally, its electrochemical transformation on platinum, gold and glassy carbon screen-printed electrodes was examined. This study showed that maraviroc is especially susceptible to UVA, H2O2 and electrochemical degradation, while being resistant to neutral and acidic hydrolysis. A cluster analysis showed that the electrochemical transformation, with particular reference to the platinum electrode, is able to partially simulate the forced degradation processes, especially in the context of redox reactions. These findings indicate that the electrochemical methods can be considered as quick and relatively low-cost supplements to the commonly applied forced degradation procedures.


Assuntos
Quimiometria , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Maraviroc , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Peróxido de Hidrogênio , Platina , Estabilidade de Medicamentos , Oxirredução , Hidrólise , Fotólise
12.
Antimicrob Agents Chemother ; 66(8): e0060922, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35856680

RESUMO

Although current antiretroviral therapy (ART) has increased life expectancy, a cure for human immunodeficiency virus (HIV) remains elusive due to the persistence of the virus in tissue reservoirs. In the present study, we sought to elucidate the relationship between antiretrovirals (ARVs) and viral expression in the spleen. We performed mass spectrometry imaging (MSI) of 6 different ARVs, RNAscope in situ hybridization of viral RNA, and immunohistochemistry of three different fibrosis markers in the spleens of 8 uninfected and 10 reverse transcriptase simian-human immunodeficiency virus (RT-SHIV)-infected rhesus macaques (infected for 6 weeks) that had been dosed for 10 days with combination ART. Using MATLAB, computational quantitative imaging analysis was performed to evaluate the spatial and pharmacological relationships between the 6 ARVs, viral RNA, and fibrotic deposition. In these spleens, >50% of the spleen tissue area was not covered by any detectable ARV response (any concentration above the limits of detection for individual ARVs). The median spatial ARV coverage across all tissues was driven by maraviroc followed by efavirenz. Yet >50% of RNA-positive cells were not exposed to any detectable ARV. Quantifiable maraviroc and efavirenz colocalization with RNA-positive cells was usually greater than the in vitro concentration inhibiting 50% replication (IC50). Fibrosis markers covered more than 50% of the spleen tissue area and had negative relationships with cumulative ARV coverages. Our findings suggest that a heterogeneous ARV spatial distribution must be considered when evaluating viral persistence in lymphoid tissue reservoirs.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Fibrose , HIV/genética , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/genética , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Maraviroc/uso terapêutico , RNA Viral/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Baço/metabolismo , Carga Viral
13.
J Neuroinflammation ; 19(1): 195, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906621

RESUMO

BACKGROUND: Valproic acid (VPA) is a clinically used antiepileptic drug, but it is associated with a significant risk of a low verbal intelligence quotient (IQ) score, attention-deficit hyperactivity disorder and autism spectrum disorder in children when it is administered during pregnancy. Prenatal VPA exposure has been reported to affect neurogenesis and neuronal migration and differentiation. In addition, growing evidence has shown that microglia and brain immune cells are activated by VPA treatment. However, the role of VPA-activated microglia remains unclear. METHODS: Pregnant female mice received sodium valproate on E11.5. A microglial activation inhibitor, minocycline or a CCR5 antagonist, maraviroc was dissolved in drinking water and administered to dams from P1 to P21. Measurement of microglial activity, evaluation of neural circuit function and expression analysis were performed on P10. Behavioral tests were performed in the order of open field test, Y-maze test, social affiliation test and marble burying test from the age of 6 weeks. RESULTS: Prenatal exposure of mice to VPA induced microglial activation and neural circuit dysfunction in the CA1 region of the hippocampus during the early postnatal periods and post-developmental defects in working memory and social interaction and repetitive behaviors. Minocycline, a microglial activation inhibitor, clearly suppressed the above effects, suggesting that microglia elicit neural dysfunction and behavioral disorders. Next-generation sequencing analysis revealed that the expression of a chemokine, C-C motif chemokine ligand 3 (CCL3), was upregulated in the hippocampi of VPA-treated mice. CCL3 expression increased in microglia during the early postnatal periods via an epigenetic mechanism. The CCR5 antagonist maraviroc significantly suppressed neural circuit dysfunction and post-developmental behavioral disorders induced by prenatal VPA exposure. CONCLUSION: These findings suggest that microglial CCL3 might act during development to contribute to VPA-induced post-developmental behavioral abnormalities. CCR5-targeting compounds such as maraviroc might alleviate behavioral disorders when administered early.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Comportamento Animal , Modelos Animais de Doenças , Feminino , Maraviroc/uso terapêutico , Maraviroc/toxicidade , Camundongos , Minociclina/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptores CCR5/genética , Ácido Valproico/toxicidade
14.
J Antimicrob Chemother ; 77(2): 500-506, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791296

RESUMO

BACKGROUND: Tenofovir disoproxil fumarate-containing pre-exposure prophylaxis (PrEP) has been associated with decreases in bone mineral density (BMD), but the bone effects of other non-tenofovir disoproxil fumarate candidate PrEP regimens are not well described. METHODS: The HPTN 069/ACTG A5305 study randomized 406 US cisgender men and transgender women, and 188 cisgender women at risk for HIV infection to one of four double-blinded regimens: (i) maraviroc; (ii) maraviroc + emtricitabine; (iii) maraviroc + tenofovir disoproxil fumarate; or (iv) tenofovir disoproxil fumarate + emtricitabine. BMD was measured in a subset of participants at the lumbar spine (LS) and hip by dual-energy X-ray absorptiometry (DXA) at baseline and 48 weeks. Percentage change in LS and hip BMD was compared between the tenofovir disoproxil fumarate- and non-tenofovir disoproxil fumarate-containing arms by Wilcoxon rank-sum tests and multiple linear regression adjusting for sex, race and baseline BMI. RESULTS: At baseline (n = 307), the median age was 33 years, 56% male and 43% black. At the hip, the median percentage change in BMD at 48 weeks was -1.05% in the tenofovir disoproxil fumarate arms and 0.0% in the non-tenofovir disoproxil fumarate arms (between group P = 0.001). No interaction by sex was observed. The median percentage change in LS BMD was not different between arms. CONCLUSIONS: Tenofovir disoproxil fumarate-containing PrEP was associated with significantly greater bone loss compared with maraviroc ± emtricitabine PrEP at the hip, but not the LS. The BMD changes at the hip were similar in magnitude in men and women.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Adulto , Fármacos Anti-HIV/uso terapêutico , Método Duplo-Cego , Emtricitabina/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Masculino , Maraviroc/uso terapêutico , Tenofovir/uso terapêutico
15.
Rheumatology (Oxford) ; 61(7): 3033-3048, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34747459

RESUMO

OBJECTIVES: LN comprises various glomerular lesions, including endocapillary hypercellularity with macrophage infiltration. In this study, we aimed to clarify the involvement of macrophage-tropic chemokine receptors in the pathogenesis of these glomerular lesions. METHODS: MRL/lpr mouse-derived monoclonal IgG3 antibody-producing hybridomas, 2B11.3 and B1, were injected intraperitoneally into BALB/c mice [wild type (WT)] to induce endocapillary hypercellularity and wire-loop lesions, respectively. The expression of chemokine and chemokine receptors was analysed by quantitative real-time PCR and IF. The roles of chemokine receptors in these lesions were evaluated using chemokine receptor-deficient mice or a selective CCR5 antagonist, maraviroc. RESULTS: 2B11.3 caused glomerular endocapillary hypercellularity with a significant number of glomerular CD68-positive macrophages. Further, enhanced expression of CCL2, CCL3, CCR2, CCR5 and CX3CR1 was observed in the renal cortex, compared with B1 injection, which induced wire-loop lesions. In 2B11.3-induced glomerular lesions, CD68 -positive glomerular macrophages expressed CCL2, CCL3, CCR2, CCR5 and CX3CR1, while glomerular endothelial cells expressed CCL2, CCL3, CX3CL1 and CCR2. When 2B11.3 was injected, CCR2-/- and CCR5-/-, but not CX3CR1-/-, mice exhibited reduced endocapillary hypercellularity, attenuated glomerular macrophage infiltration and improved serum blood urea nitrogen levels. Only CCR2-/- mice developed wire-loop lesions. B1 injection caused wire-loop lesions in these chemokine receptor-deficient mice to a similar extent as WT. Maraviroc treatment reduced 2B11.3-induced endocapillary hypercellularity and improved serum blood urea nitrogen levels. CONCLUSION: CCR2 and CCR5 regulate glomerular macrophage infiltration and contribute to the development of glomerular endocapillary hypercellularity in LN. CCR5 inhibition can be a specific therapy for endocapillary hypercellularity without inducing wire-loop lesions.


Assuntos
Nefropatias , Nefrite Lúpica , Receptores CCR2 , Receptores CCR5 , Animais , Anticorpos Monoclonais , Células Endoteliais/metabolismo , Imunoglobulina G/metabolismo , Nefropatias/metabolismo , Nefrite Lúpica/patologia , Macrófagos/metabolismo , Maraviroc/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo
16.
AIDS Behav ; 26(12): 4107-4114, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35687192

RESUMO

HPTN 069/ACTG 5305 was designed to evaluate potential new PrEP regimens that included maraviroc, tenofovir disoproxil fumarate, and/or emtricitabine. The current analyses assessed antiretroviral (ARV) plasma concentrations in relation to sexual behavior in 224 cisgender men who have sex with men and 2 transgender women at risk for HIV. Poisson generalized estimating equations (GEE) regression were used to test for associations between self-reported sexual behavior, sociodemographic, behavioral variables, and study drug levels The median (IQR) age was 30 [25, 37] years old; 48.2% had completed college; 27.4% were Black and 21.7% Latino. At weeks 24 and 48, one third of participants reported condomless anal sex (CAS) in the prior month with more than one partner. CAS was associated with daily ARV drug use (χ2 = 12.64, p = 0.002). Older individuals and those with greater education were more likely to ingest ARV drugs daily (χ2 = 9.36, p = 0.009 and χ2 = 8.63, p = 0.013, respectively), while neither race nor ethnicity was associated with daily ARV drug use. Participants who reported recent condomless anal sex and/or advanced education had higher rates of daily ARV drug use. These data support the need for ongoing adherence counseling in clinical trials of new PrEP modalities.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Minorias Sexuais e de Gênero , Masculino , Feminino , Humanos , Emtricitabina/uso terapêutico , Tenofovir/uso terapêutico , Maraviroc/uso terapêutico , Homossexualidade Masculina , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Adesão à Medicação , Comportamento Sexual , Antirretrovirais/uso terapêutico
17.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555761

RESUMO

Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , Humanos , Maraviroc/farmacologia , HIV/metabolismo , Simulação de Acoplamento Molecular , Cisteína , Infecções por HIV/tratamento farmacológico , Farmacóforo , Receptores de Quimiocinas , Simulação de Dinâmica Molecular , Receptores CCR5/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/química
18.
J Environ Manage ; 319: 115735, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863307

RESUMO

In this study photochemical transformation of the antiretroviral pharmaceutical maraviroc under the simulated UV-Vis radiation was presented. The drug was shown to be extremely photo-resistant, with a half-life over 250 h, which is particularly significant, considering its presence in the aquatic environments. Addition of the natural river water matrix substantially increased the degradation rate, albeit the process led to formation of numerous phototransformation products. Due to high photostability and presumable environmental persistence of maraviroc, a photocatalytic method of its elimination was proposed. Although titanium dioxide alone presented acceptable results, its combination with peroxymonosulfate enormously accelerated the degradation process, increasing it over 67 000 times in comparison with the direct photolysis. Substitution of ultrapure water with river water resulted in inhibition of the PMS-driven processes, however the decomposition efficiency was still very high. Noteworthy, majority of the identified photoproducts were still present after termination of irradiation in all the experiments, which may indicate necessity of ecotoxicological assessment of those compounds.


Assuntos
Fármacos Anti-HIV , Poluentes Químicos da Água , Catálise , Cinética , Maraviroc , Peróxidos , Fotólise , Titânio/química , Água , Poluentes Químicos da Água/química
19.
Angew Chem Int Ed Engl ; 61(41): e202210312, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35972406

RESUMO

Amides are ubiquitous in physical and life sciences. Given the significant abundance of arenes, dearomative aminocarbonylation of arenes would lead to a large and underexplored chemical space for amide discovery. However, such reactions are challenging due to the high degree of resonance stabilization and selectivity issues. Herein, we disclose an unprecedented dearomative trifluoromethylative aminocarbonylation of arenes via bifunctional coordination to chromium, providing a modular platform for the construction of amides possessing trifluoromethyl (CF3 ) groups and three-dimensional rings. Its versatility further enabled a switchable difluoromethylation or trifluoromethylation aminocarbonylation of arene C-H bonds. A possible mechanism was proposed based on control experiments. Finally, the synthetic utility was well demonstrated by diverse applications in the total synthesis of CF3 -functionalized amide-type drugs, including praziquantel, nateglinide, maraviroc and alloyohimbane.


Assuntos
Cromo , Praziquantel , Amidas/química , Catálise , Maraviroc , Nateglinida
20.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33048041

RESUMO

Recent studies have suggested that the CCR5 antagonist maraviroc (MVC) may exert an HIV-1 latency reversal effect. This study aimed at defining MVC-mediated induction of HIV-1 in three cell line latency models and in ex vivo CD4 T cells from six patients with suppressed viraemia. HIV-1 induction was evaluated in TZM-bl cells by measuring HIV-1 LTR-driven luciferase expression, and in ACH-2 and U1 latently infected cell lines by measuring cell-free (CFR) and cell-associated (CAR) HIV-1 RNA by qPCR. NF-κB p65 was quantified in nuclear extracts by immunodetection. In ex vivo CD4 T cells, CAR, CFR and cell-associated DNA (CAD) were quantified at baseline and 1-7-14 days post-induction (T1, T7, T14). At T7 and T14, the infectivity of the CD4 T cells co-cultured with MOLT-4/CCR5 target cells was evaluated in the TZM-bl assay (TZA). Results were expressed as fold activation (FA) with respect to untreated cells. No LTR activation was observed in TZM-bl cells at any MVC concentration. NF-κB activation was only modestly upregulated (1.6±0.4) in TZM-bl cells with 5 µM MVC. Significant FA of HIV-1 expression was only detected at 80 µM MVC, namely on HIV-1 CFR in U1 (3.1±0.9; P=0.034) and ACH-2 cells (3.9±1.4; P=0.037). CFR was only weakly stimulated at 20 µM in ACH-2 (1.7±1.0 FA) cells and at 5 µM in U1 cells (1.9±0.5 FA). Although no consistent pattern of MVC-mediated activation was observed in ex vivo experiments, substantial FA values were detected sparsely on individual samples with different parameters. Notably, in one sample, MVC stimulated all parameters at T7 (2.3±0.2 CAD, 6.8±3.7 CAR, 18.7±16.7 CFR, 7.3±0.2 TZA). In conclusion, MVC variably induces HIV-1 production in some cell line models not previously used to test its latency reversal potential. In ex vivo CD4 T cells, MVC may exert patient-specific HIV-1 induction; however, clinically relevant patterns, if any, remain to be defined.


Assuntos
Antagonistas dos Receptores CCR5/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Maraviroc/farmacologia , Latência Viral/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Ativação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA