Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.441
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Purinergic Signal ; 20(2): 109-113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36941507

RESUMO

María Teresa Miras Portugal devoted most of her scientific life to the study of purinergic signalling. In an important part of her work, she used a model system: the chromaffin cells of the adrenal medulla. It was in these cells that she identified diadenosine polyphosphates, from which she proceeded to the study of adrenomedullary purinome: nucleotide synthesis and degradation, adenosine transport, nucleotide uptake into chromaffin granules, exocytotic release of nucleotides and autocrine regulation of chromaffin cell function via purinoceptors. This short review will focus on the current state of knowledge of the purinoceptors of adrenal chromaffin cells, a subject to which María Teresa made seminal contributions and which she continued to study until the end of her scientific life.


Assuntos
Medula Suprarrenal , Células Cromafins , Portugal , Medula Suprarrenal/metabolismo , Receptores Purinérgicos/metabolismo , Nucleotídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500353

RESUMO

Neuroblastoma is the most common extracranial solid tumor and accounts for ∼10% of pediatric cancer-related deaths. The exact cell of origin has yet to be elucidated, but it is generally accepted that neuroblastoma derives from the neural crest and should thus be considered an embryonal malignancy. About 50% of primary neuroblastoma tumors arise in the adrenal gland. Here, we present an atlas of the developing mouse adrenal gland at a single-cell level. Five main cell cluster groups (medulla, cortex, endothelial, stroma, and immune) make up the mouse adrenal gland during fetal development. The medulla group, which is of neural crest origin, is further divided into seven clusters. Of interest is the Schwann cell precursor ("SCP") and the "neuroblast" cluster, a highly cycling cluster that shares markers with sympathoblasts. The signature of the medullary SCP cluster differentiates neuroblastoma patients based on disease phenotype: The SCP signature score anticorrelates with ALK and MYCN expression, two indicators of poor prognosis. Furthermore, a high SCP signature score is associated with better overall survival rates. This study provides an insight into the developing adrenal gland and introduces the SCP gene signature as being of interest for further research in understanding neuroblastoma phenotype.


Assuntos
Glândulas Suprarrenais/patologia , Neuroblastoma/patologia , Células de Schwann/patologia , Análise de Célula Única , Medula Suprarrenal/patologia , Animais , Agregação Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Estadiamento de Neoplasias , Células-Tronco Neurais , Neuroblastoma/genética , Fenótipo
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612818

RESUMO

Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.


Assuntos
Medula Suprarrenal , Extremidades , Animais , Camundongos , Claudinas/genética , Camundongos Knockout , Expressão Gênica
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338771

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is a wide-spread systemic pollutant with endocrine disrupting properties. Prenatal exposure to low doses of DDT has been shown to affect adrenal medulla growth and function. The role of postnatal exposure to DDT in developmental disorders remains unclear. The aim of the present investigation is to assess growth parameters and the expression of factors mediating the function and renewal of chromaffin cells in the adult adrenal medulla of male Wistar rats exposed to the endocrine disruptor o,p'-DDT since birth until sexual maturation. The DDT-exposed rats exhibited normal growth of the adrenal medulla but significantly decreased tyrosine hydroxylase production by chromaffin cells during postnatal period. Unlike the control, the exposed rats showed enhanced proliferation and reduced expression of nuclear ß-catenin, transcription factor Oct4, and ligand of Sonic hedgehog after termination of the adrenal growth period. No expression of pluripotency marker Sox2 and absence of Ascl 1-positive progenitors were found in the adrenal medulla during postnatal ontogeny of the exposed and the control rats. The present findings indicate that an increase in proliferative activity and inhibition of the formation of reserve for chromaffin cell renewal, two main mechanisms for cell maintenance in adrenal medulla, in the adult DDT-exposed rats may reflect a compensatory reaction aimed at the restoration of catecholamine production levels. The increased proliferation of chromaffin cells in adults suggests excessive growth of the adrenal medulla. Thus, postnatal exposure to DDT alters cell physiology and increases the risk of functional insufficiency and hyperplasia of the adrenal medulla.


Assuntos
Medula Suprarrenal , Células Cromafins , Disruptores Endócrinos , Gravidez , Feminino , Ratos , Animais , Masculino , Ratos Wistar , Disruptores Endócrinos/toxicidade , DDT/toxicidade , Proteínas Hedgehog , Fenômenos Fisiológicos Celulares
5.
Pflugers Arch ; 475(6): 667-690, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36884064

RESUMO

This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Cálcio/metabolismo , Células Cromafins/metabolismo , Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Epinefrina , Exocitose/fisiologia
6.
Adv Tech Stand Neurosurg ; 47: 235-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37640878

RESUMO

Spinal dysraphism is a group of disorders resulting from an embryologic failure of spinal cord development which can lead to a radicular-medullary mechanical stretch that generates vascular compromise and hypoxic-ischemic damage to the nervous structures of the conus-cauda region.Thus, the clinical relevance of the different types of spinal dysraphism is related to the possible neurologic deficits resulting from spinal cord tethering. The clinical presentation is heterogenous: from asymptomatic to very compromised patients. The indications and the time of a detethering surgery are still subject of debate, although there is an agreement on the high standards of treatment that have to be offered by the surgery. Intraoperative neurophysiology (ION) contributes to the safety of tethered cord surgery in reducing the risks of iatrogenic neurological damages.


Assuntos
Medula Suprarrenal , Defeitos do Tubo Neural , Disrafismo Espinal , Humanos , Neurofisiologia , Disrafismo Espinal/cirurgia , Medula Espinal/cirurgia
7.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298112

RESUMO

The homeostasis of the adrenal gland plays a decisive role in its proper functioning, both in non-stressful conditions and under the influence of various types of stress. This consists of interactions between all types of cells that make up the organ, including parenchymal and interstitial cells. The amount of available information on this subject in the rat adrenal glands under non-stressful conditions is insufficient; the aim of the research was to determine the expression of marker genes for rat adrenal cells depending on their location. The material for the study consisted of adrenal glands taken from intact adult male rats that were separated into appropriate zones. Transcriptome analysis by means of Affymetrix® Rat Gene 2.1 ST Array was used in the study, followed by real-time PCR validation. Expression analysis of interstitial cell marker genes revealed both the amount of expression of these genes and the zone in which they were expressed. The expression of marker genes for fibroblasts was particularly high in the cells of the ZG zone, while the highest expression of specific macrophage genes was observed in the adrenal medulla. The results of this study, especially with regard to interstitial cells, provide a so far undescribed model of marker gene expression of various cells, both in the cortex and medulla of the sexually mature rat adrenal gland. The interdependence between parenchymal and interstitial cells creates a specific microenvironment that is highly heterogeneous within the gland with respect to some of the interstitial cells. This phenomenon most likely depends on the interaction with the differentiated parenchymal cells of the cortex, as well as the medulla of the gland.


Assuntos
Medula Suprarrenal , Transcriptoma , Ratos , Masculino , Animais , Glândulas Suprarrenais/metabolismo , Medula Suprarrenal/metabolismo , Perfilação da Expressão Gênica
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769098

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is the most widespread persistent pollutant with endocrine-disrupting properties. DDT has been shown to disrupt secretory and morphogenetic processes in the adrenal cortex. The present investigation aimed to evaluate transcriptional regulation of postnatal growth of the adrenal medulla and formation of the pools necessary for self-renewal of medullary cells in rats that developed under low-dose exposure to DDT. The study was performed using male Wistar rats exposed to low doses of o,p'-DDT during prenatal and postnatal development. Light microscopy and histomorphometry revealed diminished medulla growth in the DDT-exposed rats. Evaluation of Ki-67 expression in chromaffin cells found later activation of proliferation indicative of retarded growth of the adrenal medulla. All DDT-exposed rats exhibited a gradual decrease in tyrosine hydroxylase production by adrenal chromaffin cells. Immunohistochemical evaluation of nuclear ß-catenin, transcription factor Oct4, and ligand of sonic hedgehog revealed increased expression of all factors after termination of growth in the control rats. The DDT-exposed rats demonstrated diminished increases in Oct4 and sonic hedgehog expression and lower levels of canonical Wnt signaling activation. Thus, developmental exposure to the endocrine disruptor o,p'-DDT alters the transcriptional regulation of morphogenetic processes in the adrenal medulla and evokes a slowdown in its growth and in the formation of a reserve pool of cells capable of dedifferentiation and proliferation that maintain cellular homeostasis in adult adrenals.


Assuntos
Medula Suprarrenal , DDT , Gravidez , Feminino , Ratos , Animais , Masculino , DDT/toxicidade , Ratos Wistar , Proteínas Hedgehog/genética
9.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834073

RESUMO

Chronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system. CUMS induced anxiety-like behaviour, dysregulated the tryptophan and serotonin metabolic pathways in the hippocampus, prefrontal cortex, and colon, and altered the composition of the gut microbiota. CUMS reduced the catecholamine synthetic capacity of the adrenal glands. Differential effects were found in these parameters in the HFD and SUP diet. Thus, dietary modifications may profoundly affect the multiple dynamic systems involved in mood disorders.


Assuntos
Medula Suprarrenal , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Dieta , Medula Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Depressão/metabolismo
10.
Bull Exp Biol Med ; 175(4): 549-556, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37776400

RESUMO

Regulation of morphogenetic processes during postnatal development of the rat adrenal medulla was studied. Termination of the adrenal medulla growth was found to be associated with decreased chromaffin cell proliferation, activation of canonical Wnt-signaling pathway, and enhanced expression of Sonic Hedgehog ligand. Analysis of transcription factors associated with pluripotency revealed increased percentage of Oct4-expressing cells by the end of medulla growth and no signs of Sox2 expression. All the cells demonstrating activation of Wnt-signaling and expression of Oct4 and Sonic Hedgehog were found to be highly differentiated chromaffin cells actively producing tyrosine hydroxylase. These findings allow considering the formation of the cell pools for dedifferentiation as a putative mechanism for physiological regeneration of the adrenal medulla.


Assuntos
Medula Suprarrenal , Células Cromafins , Ratos , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Medula Suprarrenal/metabolismo , Células Cromafins/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(4): 526-537, 2023 Apr 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37385615

RESUMO

OBJECTIVES: Nerve growth factor (NGF) induces neuron transdifferentiation of adrenal medulla chromaffin cells (AMCCs) and consequently downregulates the secretion of epinephrine (EPI), which may be involved in the pathogenesis of bronchial asthma. Mammalian achaete scute-homologous 1 (MASH1), a key regulator of neurogenesis in the nervous system, has been proved to be elevated in AMCCs with neuron transdifferentiation in vivo. This study aims to explore the role of MASH1 in the process of neuron transdifferentiation of AMCCs and the mechanisms. METHODS: Rat AMCCs were isolated and cultured. AMCCs were transfected with siMASH1 or MASH1 overexpression plasmid, then were stimulated with NGF and/or dexamethasone, PD98059 (a MAPK kinase-1 inhibitor) for 48 hours. Morphological changes were observed using light and electron microscope. Phenylethanolamine-N-methyltransferase (PNMT, the key enzyme for epinephrine synthesis) and tyrosine hydroxylase were detected by immunofluorescence. Western blotting was used to test the protein levels of PNMT, MASH1, peripherin (neuronal markers), extracellular regulated protein kinases (ERK), phosphorylated extracellular regulated protein kinases (pERK), and JMJD3. Real-time RT-PCR was applied to analyze the mRNA levels of MASH1 and JMJD3. EPI levels in the cellular supernatant were measured using ELISA. RESULTS: Cells with both tyrosine hydroxylase and PNMT positive by immunofluorescence were proved to be AMCCs. Exposure to NGF, AMCCs exhibited neurite-like processes concomitant with increases in pERK/ERK, peripherin, and MASH1 levels (all P<0.05). Additionally, impairment of endocrine phenotype was proved by a signifcant decrease in the PNMT level and the secretion of EPI from AMCCs (all P<0.01). MASH1 interference reversed the effect of NGF, causing increases in the levels of PNMT and EPI, conversely reduced the peripherin level and cell processes (all P<0.01). MASH1 overexpression significantly increased the number of cell processes and peripherin level, while decreased the levels of PNMT and EPI (all P<0.01). Compared with the NGF group, the levels of MASH1, JMJD3 protein and mRNA in AMCCs in the NGF+PD98059 group were decreased (all P<0.05). After treatment with PD98059 and dexamethasone, the effect of NGF on promoting the transdifferentiation of AMCCs was inhibited, and the number of cell processes and EPI levels were decreased (both P<0.05). In addition, the activity of the pERK/MASH1 pathway activated by NGF was also inhibited. CONCLUSIONS: MASH1 is the key factor in neuron transdifferentiation of AMCCs. NGF-induced neuron transdifferentiation is probably mediated via pERK/MASH1 signaling.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Ratos , Transdiferenciação Celular , Dexametasona , Epinefrina/farmacologia , Mamíferos , Fator de Crescimento Neural , Neurônios , Periferinas , Proteínas Quinases , Tirosina 3-Mono-Oxigenase
12.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R144-R151, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936501

RESUMO

Although the patterns of response within the sympathoadrenal medullary (SAM) system and hypothalamo-pituitary adrenal (HPA) axis are interesting and important in their own accord, the overall response to acute psychological stress involves reactivity of both pathways. We tested the hypothesis that consideration of the integrated response of these pathways may reveal dysregulation of the stress systems, which is not evident when considering either system alone. Age-matched lean and overweight/obese men were subjected to a Trier Social Stress Test and reactivity of the SAM system (salivary α-amylase, systolic blood pressure, diastolic blood pressure, and heart rate) and the HPA axis (salivary cortisol) were measured. Relative reactivity of SAM system and HPA axis was calculated as the ratio between the measures from each pathway. Although analysis of reactivity of individual stress pathways showed no evidence of dysfunction in overweight/obese compared with lean men, analysis of HPA/SAM reactivity revealed significantly lower cortisol over systolic blood pressure (CoSBP) and cortisol over diastolic blood pressure (CoDBP) reactivity in overweight/obese compared with lean men. Other measures of HPA/SAM reactivity and all measures of SAM/HPA reactivity were unaltered in overweight/obese compared with lean men. These findings suggest that the cortisol response per unit of blood pressure response is blunted in men with elevated adiposity. Furthermore, these findings support a notion of a coordinated overall approach to activation of the stress pathways with the degree of activation in one pathway being related to the degree of activation in the other.


Assuntos
Medula Suprarrenal/inervação , Sistema Hipotálamo-Hipofisário/fisiopatologia , Obesidade/fisiopatologia , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Magreza/fisiopatologia , Adiposidade , Idoso , Biomarcadores/sangue , Pressão Sanguínea , Frequência Cardíaca , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/psicologia , Saliva/enzimologia , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Magreza/metabolismo , Magreza/psicologia , alfa-Amilases/metabolismo
13.
Exp Dermatol ; 31(9): 1402-1410, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35587729

RESUMO

Chronic itch is a socioeconomic burden with limited management options. Non-histaminergic itch, involved in problematic pathological itch conditions, is transmitted by a subgroup of polymodal C-fibres. Cowhage is traditionally used for studying experimentally induced non-histaminergic itch in humans but encounters some limitations. The present study, therefore, aims to design a new human, experimental model of non-histaminergic itch based on the application of bovine adrenal medulla (BAM)8-22, an endogenous peptide that activates the MrgprX1 receptor. Twenty-two healthy subjects were recruited. Different concentrations (0.5, 1 and 2 mg/ml) of BAM8-22 solution and vehicle, applied by a single skin prick test (SPT), were tested in the first session. In the second session, the BAM8-22 solution (1 mg/ml) was applied by different number of SPTs (1, 5 and 25) and by heat-inactivated cowhage spicules coated with BAM8-22. Provoked itch and pain intensities were monitored for 9 min, followed by the measurement of superficial blood perfusion (SBP) and mechanical and thermal sensitivities. BAM8-22 induced itch at the concentration of 1, 2 mg/ml (p < 0.05) and with the significantly highest intensity when applied through BAM8-22 spicules (p < 0.001). No concomitant pain sensation or increased SBP was observed. SBP increased only in the 25 SPTs area probably due to microtrauma from the multiple skin penetrations. Mechanical and thermal sensitivities were not affected by any of the applications. BAM8-22 applied through heat-inactivated spicules was the most efficient method to induce itch (without pain or changes in SBP and mechanical and thermal sensitivities) suggesting BAM8-22 as a novel non-histaminergic, human, experimental itch model.


Assuntos
Medula Suprarrenal , Prurido , Animais , Bovinos , Humanos , Dor/induzido quimicamente , Fragmentos de Peptídeos/efeitos adversos , Prurido/induzido quimicamente
14.
Pharmacology ; 107(1-2): 81-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34794150

RESUMO

INTRODUCTION: The present study examined the effects of fatty acid amide hydrolase inhibitor URB597 on the level of plasma catecholamine and their content, synthesis, and degradation in the adrenal medulla of male and female rats subjected to chronic unpredictable stress (CUS). MATERIAL AND METHODS: Male and female Wistar rats were exposed to the 6 weeks of CUS and treated intraperitoneally with either 0.3 mg/kg/day of URB597 or vehicle in the last 2 weeks of stress protocol. Catecholamines' plasma levels and catecholamines' levels in adrenal medulla were examined using Elabscience ELISA kits. Western blot analysis was used to detect the protein in the medulla. RESULTS: The results of our experiment showed that adrenal weights and catecholamine of unstressed control were higher in females and that CUS induced further enlargement of adrenal glands and catecholamine content and its synthesis compared to male rats. CUS caused an increase of plasma norepinephrine and depletion of norepinephrine content as well as unchanged synthesis and degradation of catecholamine in the adrenal medulla of male rats. URB597 reduced enlarged adrenals and catecholamine content and its synthesis in stressed female rats. URB597 reduces increased plasma norepinephrine and restores its content in the adrenal medulla, unchanging the expression of enzyme synthesis, while reduced protein levels of monoamine oxidase A in male rats are exposed to CUS. DISCUSSION: Our results support the role of endocannabinoids as an antistress mechanism that inhibits elevated adrenomedullary activation and promotes its recovery to baseline in both male and female stressed rats.


Assuntos
Medula Suprarrenal/metabolismo , Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Catecolaminas/metabolismo , Dor/metabolismo , Estresse Psicológico/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Animais , Benzamidas/uso terapêutico , Carbamatos/uso terapêutico , Catecol O-Metiltransferase/metabolismo , Endocanabinoides/fisiologia , Feminino , Masculino , Monoaminoxidase/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar
15.
Pharmacology ; 107(1-2): 46-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788751

RESUMO

AIM: The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central cholinergic system. METHODS: Wistar rats were divided into sham-saline (sham-SAL), sham-PHY, adrenal medullectomy-SAL, and ADM-PHY groups. The plasma concentrations of glucose, lactate, and FFAs were determined immediately before and after i.c.v. injection of 20 µL of SAL or PHY at rest and during running exercise on a treadmill. RESULTS: The i.c.v. injection of PHY at rest increased plasma glucose in the sham group, but not in the ADM group. An increase in plasma glucose, lactate, and FFAs mobilization from adipose tissue was observed during physical exercise in the sham-SAL group; however, the increase in plasma glucose was greater with i.c.v. PHY. Moreover, the hyperglycemia induced by exercise and PHY in the ADM group were blunted by ADM, whereas FFA mobilization was unaffected. CONCLUSION: These results indicate that there is a dual metabolic control by which activation of the central cholinergic pathway increases plasma glucose but not FFA during rest and exercise, and that this hyperglycemic response is dependent on adrenomedullary secretion.


Assuntos
Medula Suprarrenal/fisiologia , Fibras Colinérgicas/fisiologia , Metabolismo/fisiologia , Esforço Físico/fisiologia , Medula Suprarrenal/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Fibras Colinérgicas/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacologia , Ácidos Graxos não Esterificados/sangue , Injeções Intraventriculares , Ácido Láctico/sangue , Masculino , Metabolismo/efeitos dos fármacos , Condicionamento Físico Animal , Fisostigmina/administração & dosagem , Fisostigmina/farmacologia , Ratos Wistar
16.
Proc Natl Acad Sci U S A ; 116(27): 13414-13423, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31196952

RESUMO

The molecular mechanisms regulating sympathetic innervation of the heart during embryogenesis and its importance for cardiac development and function remain to be fully elucidated. We generated mice in which conditional knockout (CKO) of the Hif1a gene encoding the transcription factor hypoxia-inducible factor 1α (HIF-1α) is mediated by an Islet1-Cre transgene expressed in the cardiac outflow tract, right ventricle and atrium, pharyngeal mesoderm, peripheral neurons, and hindlimbs. These Hif1aCKO mice demonstrate significantly decreased perinatal survival and impaired left ventricular function. The absence of HIF-1α impaired the survival and proliferation of preganglionic and postganglionic neurons of the sympathetic system, respectively. These defects resulted in hypoplasia of the sympathetic ganglion chain and decreased sympathetic innervation of the Hif1aCKO heart, which was associated with decreased cardiac contractility. The number of chromaffin cells in the adrenal medulla was also decreased, indicating a broad dependence on HIF-1α for development of the sympathetic nervous system.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Sistema Nervoso Simpático/crescimento & desenvolvimento , Medula Suprarrenal/embriologia , Medula Suprarrenal/inervação , Animais , Células Cromafins , Anomalias dos Vasos Coronários/embriologia , Vasos Coronários/embriologia , Feminino , Gânglios Simpáticos/embriologia , Gânglios Simpáticos/crescimento & desenvolvimento , Coração/embriologia , Coração/inervação , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Sistema Nervoso Simpático/enzimologia
17.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563302

RESUMO

Epinephrine is the most abundant catecholamine hormone, produced by the nervous system and adrenal glands. Endocrine disruption of epinephrine synthesis, secretion and signaling is less studied than steroid and thyroid hormones. Dichlorodiphenyltrichloroethane (DDT) is recognized as one of the most prominent environmental contaminants with a long half-life. It is a potent endocrine disrupter affecting sex steroid, mineralocorticoid, glucocorticoid and thyroid hormone production. Exposure to low doses of DDT is universal and begins in utero. Therefore, we studied adrenal medulla growth and function in male Wistar rats exposed to low doses of DDT during prenatal and postnatal development until puberty and adulthood, as well as rats exposed to DDT since the first day of postnatal development. All the exposed rats demonstrated lowered epinephrine blood levels, gradually reducing with age. DDT was found to inhibit the synthesis of tyrosine hydroxylase and affect the mitochondrial apparatus of epinephrine-producing cells during puberty and even after maturation. Low-dose exposure to DDT from birth resulted in more pronounced changes in adrenomedullary cells and a more profound decrease (up to 50%) in epinephrine secretion in adult rats. Prenatal onset of exposure demonstrated a mild effect on epinephrine-producing function (30% reduction), but was associated with lower rate of adrenal medulla growth during maturation and 25% smaller adrenal medullar size in adult rats. All subjects exposed to low doses of DDT failed to develop adaptive changes and restore proper epinephrine production. These results indicate a dysmorphogenetic effect of prenatal exposure and disruption of secretory function of adrenal chromaffin cells by postnatal exposure to DDT.


Assuntos
Medula Suprarrenal , Disruptores Endócrinos , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , DDT/toxicidade , Disruptores Endócrinos/toxicidade , Epinefrina , Feminino , Humanos , Masculino , Gravidez , Ratos , Ratos Wistar
18.
Bull Exp Biol Med ; 173(6): 783-786, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36322318

RESUMO

We analyzed the expression of the transcription factor Oct4 in the chromaffin cells during the postnatal development of the adrenal glands in rats. Single Oct4+-chromaffin cells with nuclear localization of the protein were found in the medulla, and their number increased in parallel with a decrease in the proliferative activity of cells. In postnatal development, 100% of chromaffin cells demonstrated high expression of tyrosine hydroxylase, which attested to their differentiation and functional activity. It was found that all Oct4+ cells were differentiated chromaffin cells. An increase in the pool of Oct4-expressing cells after the completion of organ growth suggests the formation of a potential source for the physiological and reparative regeneration of the adrenal medulla.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Ratos , Glândulas Suprarrenais/metabolismo , Medula Suprarrenal/metabolismo , Diferenciação Celular , Células Cromafins/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Bull Exp Biol Med ; 173(1): 110-113, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35618967

RESUMO

We studied the mechanisms underlying decreased production of epinephrine by adrenal glands in rats developmentally exposed to endocrine disruptor DDT was performed on the basis of assessment of morphology, fine structure, and function of the adrenal medulla and medullary cells. It was found that the main mechanisms of disruptive action of DDT leading to a decrease in epinephrine secretion into systemic circulation are a decrease in the growth rate of the adrenal medulla, a decrease in the number of mitochondria in adrenal cells, especially under the outer cytoplasmic membrane, destructive changes in mitochondria, and a progressive decrease in the synthesis of tyrosine hydroxylase. The decrease in the number of mitochondria and suppression tyrosine hydroxylase synthesis in adrenal cells predominate during the pubertal period, while slowdown of the growth of the adrenal medulla and progressive decrease in the synthesis of tyrosine hydroxylase seem to be the most evident mechanisms after puberty.


Assuntos
Medula Suprarrenal , DDT , Animais , DDT/toxicidade , Epinefrina , Ratos , Maturidade Sexual , Tirosina 3-Mono-Oxigenase
20.
J Physiol ; 599(6): 1855-1883, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450050

RESUMO

KEY POINTS: Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na+ -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs+ ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue. ABSTRACT: Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na+ -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence gNa  > gK  > gCs . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.


Assuntos
Medula Suprarrenal , Células Cromafins , Potenciais de Ação , Animais , Íons , Camundongos , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA